簡易檢索 / 詳目顯示

研究生: 林仲彥
Lin, Chung-Yen
論文名稱: 利用結構設計增加壓電麥克風感測靈敏度
Sensitivity Improvement of MEMS Piezoelectric Microphone Using Structural Design
指導教授: 方維倫
Fang, Weileun
口試委員: 李昇憲
Li, Sheng Shian
吳名青
Wu, Ming Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 93
中文關鍵詞: 微機電技術壓電式麥克風應力分布
外文關鍵詞: MEMS, Piezoelectric Microphone, Stress distribution
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究欲開發一壓電製程平台,並利用該平台進行微型麥克風設計、分析與製作。市售商用電容式麥克風由於受到設計上諸多限制,而使得麥克風之訊雜比無法進一步提升,壓電式麥克風則受壓電材料成長品質與蝕刻困難,使得壓電式麥克風發展受限。本研究透過相較簡單的SOI (Silicon-on-insulator wafer) 製程,提出利用結構設計方式增加壓電麥克風之感測靈敏度,利用黃光微影定義出壓電膜層凸塊形狀,縮小感測電極面積,使得主體振膜與壓電膜層之間的應力分布進一步提升,可增加單一壓電麥克風之感測靈敏度,透過有限元素模擬軟體結果顯示,所設計壓電式麥克風,相較傳統設計可提升兩倍感測靈敏度,透過麥克風頻率響應量測結果,初步驗證了利用壓電材料設計微型麥克風的可行性。


    This study proposes a sensitivity improving approach for MEMS piezoelectric microphones by using structral design. Compared to exsited commercial microphone constrained by several design limitations, piezoelectric microphones have great potential to achieve higher Signal-to-Noise Ratio. In application, the present design has been implemented on the Silicon-on-Insulator (SOI) wafer. By patterning piezoelectric material, stress distribution in bimorph structure can be improved. Through design different geometry, the sensitivity of piezoelectric microphone can be enhanced 190% from simulation. Reference type microphone design has been measured, and the results can verify the possibility of using piezoelectric platform to fulfill microphone design.

    中文摘要 i Abstract ii 誌謝 iii 目錄 v 圖目錄 vi 表目錄 xi 第一章 緒論 1 1-1前言 1 1-2文獻回顧 2 1-2-1 封閉式振膜壓電麥克風 3 1-2-2 開放式懸臂樑壓電麥克風 6 1-3研究動機 8 第二章 設計與分析 22 2-1感測原理 23 2-2設計概念 26 2-3開放式懸臂樑振膜設計 27 2-3-1機械靈敏度 27 2-3-1-1 平面幾何尺寸效應 27 2-3-1-2薄膜厚度效應 32 2-3-2壓電靈敏度 33 2-3-3感測電路靈敏度 35 2-3-4低頻衰減效應評估 37 第三章 製程結果 52 3-1製程流程 52 3-2製程問題討論 53 3-2-1壓電料及白金下電極乾式蝕刻 54 3-2-2光阻選擇比與光阻焦化 57 3-2-3蝕刻負載效應 57 3-3製程結果 58 第四章 量測與實驗架設 71 4-1 材料係數量測錯誤! 找不到參照來源。 71 4-1-1壓電轉換係數量測 71 4-1-2楊氏模數量測 73 4-1-3介電係數與介電損失量測 74 4-2動態量測 75 4-3性能量測 76 第四章 量測與實驗架設結論與未來工作 84 5-1結論 85 5-2未來工作 86 參考文獻 90

    [1]www.knowles.com.
    [2]www.yole.fr
    [3]M. Royer, J.O. Holmen, M.A. Wurm, and O.S.
    Saadland, “ZnO on Si integrated acoustic sensor,”
    Sensors and Actuators A, 4, pp.357-362, 1983.
    [4]E.S. Kim, and R.S. Muller, “IC-processdded
    Piezoelectric Microphone,” Electron Device Letters,
    IEEE, 8, pp.467-468, 1987.
    [5]E.S. Kim, R.S. Muller, P.R. Gray, “Integrated
    Microphone with CMOS circuits on a single chip,”
    Technical Digest, IEEE International Electron Devices
    Meeting, Washington, DC, Dec, 1989, pp.880-883.
    [6]R.P. Ried, E.S. Kim, D.M.Hong and R.S. Muller,
    “Piezoelectric microphone with on-chip CMOS circuits,”
    Journal of Microelectromechanical Systems, 2, no.3,
    1993.
    [7]S.C. Ko, Y.C. Kim, S.S. Lee, S.H. Choi and S.R. Kim,
    “Micromachined piezoelectric membrane acoustic
    device,” Sensors and Actuators A, 103, pp.130-134,
    2003.
    [8]R.S Fazzio, T.Lamers, O.Buccafusca, A.Goel, and
    W.Dauksher, “Design and Performance of Aluminum
    Nitride Piezoelectric Microphones,” Solid-State
    Sensors, Actuators and Microsystems Conference, Lyon,
    France, June, 2007, pp.1255-1258,.
    [9]W.S. Lee, and S.S. Lee, “Piezoelectric microphone
    built on circular diaphragm,” Sensors and Actuators A,
    144, pp.367-373, 2008.
    [10]S. Horowitz, T. Nishida, L. Cattafesta and M.
    Sheplak, “Development of a micromachined
    piezoelectric microphone for aeroacoustics
    applications,” The Journal of the Acoustical Society
    of America, 122, 2007.
    [11]M.D. Williams, B.A. Griffin, T.N. Reagan, J.R.
    Underbrink and M.Shelpak, “An AlN MEMS Piezoelectric
    Microphone for Aeroacoustic Applications,” Journal of
    Microelectromechanical Systems, 21, pp.270-283, 2012.
    [12]S.S. Lee, R.P. Ried and R.M. White “Piezoelectric
    Cantilever Microphone and Microspeaker,” Journal of
    Microelectromechanical Systems, 5, No.4, 1996.
    [13]C.H. Han, and E.S. Kim, “Fabrication of piezoelectric
    acoustic transducers built on cantilever-like
    diaphragm,” IEEE Micro Electro Mechanical Systems,
    Interlaken, Switzerland, Jan, 2001, pp.110-113.
    [14]N. Ledermann, P. Muralt, J. Baborowski, M. Forster
    and J.-P. Pellaux, “Piezoelectric Pb(Zrx, Ti1−x)O3
    thin film cantilever and bridge acoustic sensors for
    miniaturized photoacoustic gas detectors,” Journal of
    Micromechanics and Microengineering, 14, pp.1650-
    1658, 2004.
    [15]R. Littrell and K. Grosh, “Noise minimization in
    micromachined piezoelectric microphones,” Proceedings
    of Meetings on Acoustics, 19, no.030041, 2013.
    [16]S. Timoshenko and S. Woinowsky-Krieger, Theory of
    Plates and Shells. 2nd Ed., New York, NY: McGraw-
    Hill, 1995.
    [17]W.C. Young R.G. Budynas, and A. Sadegn, Roark's
    Formulas for Stress and Strain. 8th Ed., New York,
    NY: McGraw-Hill, 2011.
    [18]www.dpamicrophones.com
    [19]R.F. Gibson, Principles of Composite Material
    Mechanics. 3rd Ed., Florida FL: CRC Press, 2011..
    [20]W.A. Ryan, M.A. Kildeer and V.Leoppert, Microphone
    Having Multiple Transducer Elements, US Patent
    8594347 B2, 2013
    [21]J.J. Bernstein, Acoustic Transducer With Improved Low
    Frequency Response, US Patent 5,452,268, 1995
    [22]P.J. Pritchard and J.C. Leylegian, Fox and McDonald's
    Introduction to Fluid Mechanics. 8th Ed., New Jersey,
    NJ: John Wiley & Sons, Inc., 2010.
    [23]R. Zachariasz, A. Zarycka and J. Ilczuk,
    “Determination of the lead titanate zirconate phase
    diagram by the measurements of the internal friction
    and Young’s modulus,” Materials Science-Poland, 25,
    pp. 781-789, 2007.
    [24]K.E. Petersen and C.R. Guarnieri, “Young's modulus
    measurements of thin films using micromechanics,”
    Journal of Applied Physics, 50, pp.6761-6766, 1979.
    [25]M.A. Trindade and A. Benjeddou, “Effective
    electromechanical coupling coefficients of
    piezoelectric adaptive structures: critical
    evaluation and optimization,” Mechanics of advanced
    Materials and Structures, 16, pp. 210-223, 2009.
    [26]Q. Zhang and R.W. Whatmore “Sol–gel PZT and Mn-doped
    PZT thin films for pyroelectric applications,”
    Journal of Physics D: Applied Physics, 34, pp.2296–
    2301, 2001.
    [27]D.T. Martin, “Design, fabrication, and
    characterization of a MEMS dual-backplate capacitive
    microphone” Dissertation of University of Florida,
    2007.
    [28]J.G. Smits and W.S. Choi “The constituent equations
    of piezoelectric heterogeneous bimorphs” Ultrasonics,
    Ferroelectrics, and Frequency Control, IEEE
    Transactions on, 38, pp.256–70, 1991

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE