研究生: |
羅紹維 Luo, Shao-Wei |
---|---|
論文名稱: |
飛秒雷射於透明材料加工特性之研究 Characteristics of Micromachining on Transparent Materials by Femtosecond Laser |
指導教授: |
蔡宏營
Tsai, Hung-Yin |
口試委員: |
張所鋐
林仁輝 宋震國 張天立 鄭中緯 蔡宏營 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 100 |
中文關鍵詞: | 飛秒雷射 、微結構加工 、透明材料 、表面處裡 、改質 、化學蝕刻 |
外文關鍵詞: | femtosecond laser, micromachining, transparent material, surface treatment, modification, chemical etching |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究與探討飛秒雷射加工於透明材料之特性,分別針對雷射於軟性透明材料之表面處裡、內部改質以及硬脆透明材料微加工改質後配合蝕刻之製程等三個部分進行討論。此外,為了有效掌握實驗設計所提出的改質配合蝕刻之製程方法,本研究同時利用數值計算方法擬合實驗結果,藉此了解實驗結構成形之過程,進一步決定實驗時之加工參數設定與結構設計。
在表面處理方面,主要以飛秒雷射於PET表面加工一維光柵結構,藉此提升PET材料表面之疏水特性。傳統的電漿表面改質方法,往往都具有時效性,本研究使用飛秒雷射加工之結構性疏水表面,能有效使原本親水性表面(Contact Angle, CA = 39.37o)的PET材料,大幅改善為高疏水性表面(CA = 128.47o)。
在內部改質方面,實驗利用飛秒雷射聚焦於可撓性透明材料PDMS內部,加工一維繞射光柵結構。其加工後之元件,透過二極體雷射垂直入射後,能有效產生多階繞射圖案,達到光束分光之效果。
在內部改質配合蝕刻製程方面,本研究提出一快速加工成形三角(V-Cut)微光柵之方法,實驗首先透過飛秒雷射聚焦於透明玻璃材料內部,使材料內部於聚焦點處產生鍵結破壞,利用移動平台掃描加工製作內部改質之一維光柵圖案;而後,再透過氫氟酸進行化學蝕刻成形結構。由於受改質之區域,其材料鍵結斷鍵破壞分子結構,使該區域之材料與蝕刻液反應較為迅速,因此蝕刻過程在改質區與未改質之材料間,會產生不同之蝕刻速率達到非等向性蝕刻的特性,藉此顯影成形V-Cut微光柵結構。為了拓展製程應用範圍,實驗另外設計與製作二維微稜鏡與三維光子晶體兩種結構。
在數值計算與模擬方面,本研究提出一針對雷射聚焦能量分布與材料吸收之簡化方程式,能夠快速計算飛秒雷射於透明材料內之有效改質區域範圍;了解改質區範圍後,便可透過模擬軟體設計飛秒雷射改質模型,再配合化學反應通量之模擬,計算改質配合非等向性蝕刻之結構成形過程,並且與實驗結果作比對分析。在對應的蝕刻比參數下,模擬結果之表面形貌,能確實符合實驗V-Cut微光柵結構之結果,並且進一步擬合較複雜的二維微稜鏡與三維光子晶體結構。
本論文成功地運用飛秒雷射於透明材料加工之特性,於軟性基材表面與內部進行改質處裡;另外,研究主要發展一種於透明玻璃材料進行內部改質,並且配合化學蝕刻之微奈米結構快速製程方式,同時以模擬計算方式分析其結構成形過程,藉此能輔助實驗於結構設計上之需求。
Three processes of femtosecond laser machining on different transparent materials are demonstrated in this study. The characteristics of micromachining by femtosecond laser on transparent materials are discussed in three parts: surface treatment, inner modification and modification with etching process. Additionally, the numerical methods are proposed to fit the experimental results of modification with etching process.
For the surface treatment, the hydrophobic effect on the surface of flexible and transparent material, poly(ethylene terephthalate) (PET), is studied. A femtosecond laser beam is focused on the surface of PET samples for patterning micro-grating structure with different pitches to increase contact angles. The study provides a novel and effective way to control the wettability of surfaces.
For the inner modification, a diffraction grating inside a flexible polydimethylsiloxane (PDMS) fabricated by femtosecond laser direct writing is investigated. The laser beam is focused inside the PDMS substrate, and scribes in line structure. An embedded PDMS diffraction grating is successfully demonstrated based on a calculated optical phase shift structure.
For the modification with etching process, a new kind of micro-prism structures on glass substrate is fabricated. Different pitches of embedded gratings are fabricated inside glass samples by laser-induced modification firstly. Then, the glass samples are placed in hydrofluoric acid (HF) solution for structure development. The V-cut micro-prisms are formed successfully by controlling etching ratio between intrinsic glass material and laser-modified areas. To improve the process, two and three-dimension structures of microlens array and photonic crystal are fabricated, respectively.
For the numerical method on simulating the modification with etching process, a fast approach for calculating the modified volume and shape by considering the relationship between laser fluence and material absorption is proposed. The obtained structure formed by anisotropic etching between modified region and intrinsic material can be simulated for different etching selectivity. The simulated results are agreed well with the experimental results.
[1] W. M. Steen, and J. Mazumder, "Laser Material Processing," 4th, 2010, pp.12.
[2] S. O. Kasap, "Optoelectronics and Photonics: Principles and practices," International Edition, 2001, pp.159-164.
[3] O. Svelto, "Principles of Lasers," 5th, 2010, pp.318-321.
[4] E. Hanamura, Y. Kawabe, and A. Yamanaka, "Quantum Nonlinear Optics," 2007, pp.102.
[5] R. R. Gattass, and E. Mazur, "Femtosecond laser micromachining in transparent materials," Nature Photonics, vol. 2, 2008, pp. 219-225.
[6] S. K. Sundaram, and E. Mazur, "Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses," Nature Materials, vol. 1, 2002, pp. 217-214.
[7] S. L. Chin, "Femtosecond Laser Filamentation," 2010.
[8] W. M. Steen, and J. Mazumder, "Laser Material Processing," 4th, 2010, pp.89.
[9] S. M. Sze, and K. K. Ng, "Physics of Semiconductor Devices," 3rd, 2007, pp. 52.
[10] D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Applied Physics Letters, Vol. 64, 1994, pp. 3071–3073.
[11] J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, "Femtosecond laser ablation of silicon–modification thresholds and morphology," Applied Physics A, vol. 74, 2002, pp. 19–25.
[12] E. Coyne, J. Magee, P. Mannion, and G. O’Connor, "A study of Femtosecond Laser interaction with Wafer Grade Silicon," Proceedings of SPIE, vol. 4876, 2003, pp. 487-499.
[13] D. V. Tran, Y. C. Lam, H. Y. Zheng, V. M. Murukeshan, J. C. Chai, and D. E. Hardt, "Femtosecond laser-induced damage morphologies of crystalline silicon by sub-threshold pulses," Optics and Lasers in Engineering, vol. 43, 2005, pp. 977–986.
[14] T. H. R. Crawford and H. K. Haugen, "Sub-wavelength surface structures on silicon irradiated by femtosecond laser pulses at 1300 and 2100 nm wavelengths," Applied Surface Science, vol. 253, 2007, pp. 4970–4977.
[15] K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, "Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser," Applied Physics A, vol. 77, 2003, pp. 959–963.
[16] B. Tan , N. R. Sivakumar, and K. Venkatakrishnan, "Direct grating writing using femtosecond laser interference fringes formed at the focal point," Journal of Optics A: Pure and Applied Optics, vol. 7, 2005, pp. 169–174.
[17] X. Li, D. H. Feng, T. Q. Jia, H. Y. He, P. X. Xiong, S. S. Hou, K. Zhou, Z. R. Sun, and Z. Z. Xu, "Fabrication of a two-dimensional periodic microflower array by three interfered femtosecond laser pulses on Al:ZnO thin films," New Journal of Physics, vol. 12, 2010, pp. 043025-8.
[18] A. Tavangar, B. Tan, and K. Venkatakrishnan, "Deposition of fibrous nanostructure by ultrafast laser ablation," Journal of Micromechanics and Microengineering, vol. 20, 2010, pp. 055002-6.
[19] X. Yang, N. Dai, H. Long, P. Lu, W. Li, and F. Jiang, "Experimental femtosecond laser photodisruption of rabbit sclera for minimally invasive laser sclerostomy: An in vitro study," Optics and Lasers in Engineering, vol. 48, 2010, pp. 806–810.
[20] N. Yasumaru, K. Miyazaki, and J. Kiuchi, "Control of tribological properties of diamond-like carbon films with femtosecond-laser-induced nanostructuring," Applied Surface Science, vol. 254, 2008, pp. 2364–2368.
[21] H. Y. Zheng, W. Zhou, H. X. Qian, T. T. Tan, and G. C. Lim, "Polarisation-independence of femtosecond laser machining of fused silica," Applied Surface Science, vol. 236, 2004, pp. 114–119.
[22] A. Delestre, M. Lahaye, E. Fargin, M. Bellec, A. Royon, L. Canioni, M. Dussauze, F. Adamietz, and V. Rodriguez, "Towards second-harmonic generation micropatterning of glass surface," Applied Physics Letters, vol. 96, 2010, pp. 091908.
[23] S. Valette, R. Le Harzic, E. Audouard, N. Huot, R. Fillit, and R. Fortunier, "X-ray analysis of mechanical and thermal effects induced by femtosecond laser treatment of aluminum single crystals," Applied Surface Science, vol. 252, 2006, pp. 4691–4695.
[24] K. C. Vishnubhatla, S. V. Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righini, and D. N. Rao, "Femtosecond laser direct writing of gratings and waveguides in high quantum efficiency erbium-doped Baccarat glass," Journal of Physics D: Applied Physics, vol. 42, 2009, pp. 205106 (7pp).
[25] S.-H. Cho, W.-S. Chang, J.-G. Kim, K.-R. Kim, and J. W. Hong, "Fabrication of internal diffraction gratings in planar fluoride glass using low-density plasma formation induced by a femtosecond laser," Applied Surface Science, vol. 255, 2008, pp. 2069–2074.
[26] S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, "Periodic Nanovoid Structures via Femtosecond Laser Irradiation," Nano Letters, vol. 5, 2005, pp. 1591-1595.
[27] M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, "Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram," Applied Physics Letters, vol. 93, 2008, pp. 041116-3.
[28] T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, "Photoinduced microchannels inside silicon by femtosecond pulses," Applied Physics Letters, vol. 93, 2008, pp. 051112.
[29] C. Li, T. Chen, J. Si, F. Chen, X. Shi, and X. Hou, "Fabrication of three-dimensional microchannels inside silicon using a femtosecond laser," Journal of Micromechanics and Microengineering, vol. 19, 2009, pp. 125007 -4.
[30] C. W. Cheng, J. S. Chen, P. X. Lee, and C. W. Chien, "Fabrication of microstructures in Foturan glass using infrared femtosecond laser pulses and chemical etching," Optics and Lasers in Engineering, vol. 48, 2010, pp. 811–815.
[31] R. Osellame, V. R. Martinez, C. Dongre, R. Dekker, H. J. W. M. Hoekstra, M. Pollnau, R. Ramponi, and G. Cerullo, "Femtosecond laser fabrication for the integration of optical sensors in microfluidic lab-on-chip devices," Chemical Physics, vol. 92, 2009, pp. 973-975.
[32] M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, "Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication," Thin Solid Films, vol. 516, pp. 2008, pp. 6791-6795.
[33] D. J. Richardson, "Beating the electronics bottleneck," Nature Photonics, vol. 3, 2009, pp. 562-564.
[34] K. Sugioka, Y. Hanada, and K. Midorikawa, "3D integration of microcomponents in a single glass chip by femtosecond laser direct writing for biochemical analysis," Applied Surface Science, vol. 253, 2007, pp. 6595-6598.
[35] L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, "Super-Hydrophobic Surfaces: From Natural to Artificial," Advanced Materials, vol. 14, 2002, pp. 1857-1860.
[36] J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," Journal of Micromechanics and Microengineering, vol. 7, 1997, pp. 145-147.
[37] B. Grzybowski, D. Qin, R. Haag, and G.M. Whitesides, "Elastomeric optical elements with deformable surface topographies: applications to force measurements, tunable light transmission and light focusing," Sensors and Actuators A, vol. 86, 2000, pp. 81-85.
[38] L. C. Botten, M. S. Craig, R. C. McPhedran, and J. L. Adams, "Highly conducting lamellar diffraction gratings," Journal of Modern Optics, vol. 28, 1981, 1103-1106.
[39] P. Sheng, R. Stepleman, and P. Sanda, "Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations," Physical Review B, vol. 26, 1982, pp. 2907-2916.
[40] G. D. Valle, R. Osellame, and P. Laporta, "Micromachining of photonic devices by femtosecond laser pulses," Journal of Optics A: Pure and Applied Optics: Pure and Applied Optics, vol. 11, 2009, pp. 013001-18.
[41] M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, "High aspect ratio nanochannel machining using single shot femtosecond Bessel beams," Applied Physics Letters, vol. 97, 2010, pp. 081102 (3pp).
[42] T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Applied Physics Letters, Vol. 86, 2005, pp. 201106-3.
[43] Q. Sun, A. Saliminia, F. Th´eberge, R. Vall´ee, and S. L. Chin, "Microchannel fabrication in silica glass by femtosecond laser pulses with different central wavelengths," Journal of Micromechanics and Microengineering, vol. 18, 2008, pp. 035039-4.
[44] T. L. Chang, S. W. Luo, H. P. Yang, and C. H. Lee, "Fabrication of diffraction grating in polydimethylsiloxane using femtosecond-pulsed laser micromachining," Microelectronic Engineering, vol. 87, 2010. pp. 1344-1347.
[45] M. Richardson, A. Zoubir, C. Rivero, C. Lopez, L. Petit, and K. Richardson, "Femtosecond laser micro-structuring and refractive index modification applied to laser and photonic devices," Proceedings of SPIE, vol. 5347 , 2004, pp. 5347 18-27.
[46] D. M. Krol, "Femtosecond laser modification of glass," Journal of Non-Crystalline Solids, vol. 354, 2008, pp. 416-424.
[47] X. Mao, S. S. Mao, and R. E. Russo, "Imaging femtosecond laser-induced electronic excitation in glass," Applied Physics Letters, vol. 82, 2003, pp. 697-3.
[48] F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodríguez, and P. Loza-Alvarez, "Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass," Applied Physics Letters, vol. 87, 2005, pp. 021109-3.
[49] S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, "Heat accumulation effects in femtosecond laser written waveguides with variable repetition rate," Optics Express, vol. 13, 2005, pp. 4708-4716.
[50] B. Xu, X.-Y. Wu, S.-Q. Ling, and F. Luo, "Fabrication of 3D metal micro-mold based on femtosecond laser cutting and micro-electric resistance slip welding," The International Journal of Advanced Manufacturing Technology, vol. 61, 2012, pp. 1-9.
[51] C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai "Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing," Applied Physics A: Materials Science & Processing, vol. 97, 2009, pp. 751-757.
[52] F. Madani-Grasset, and Y. Bellouard, " Femtosecond laser micromachining of fused silica molds," Optics Express, Vol. 18, 2010, pp. 21826-21840.
[53] D. P. Korfiatis, K. A. T. Thoma, and J. C. Vardaxoglou, "Numerical modeling of ultrashort-pulse laser ablation of silicon," Applied Surface Science, vol. 255, 2009, pp. 7605-7609.
[54] S.-W. Luo, T.-L. Chang, and H.-Y. Tsai, "Fabrication of glass micro-prisms using ultra-fast laser pulses with chemical etching process," Optics and Lasers in Engineering, vol. 50, 2012, pp. 220–225.
[55] L. Jiang, and H. L. Tsai, "Prediction of crater shape in femtosecond laser ablation of dielectrics," Journal of Physics D: Applied Physics, vol. 37, 2004, pp. 1492–1496.
[56] L. Jiang, and H. L. Tsai, "Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse," International Journal of Heat and Mass Transfer, vol. 48, 2005, pp. 487–499.
[57] L. Jiang, and H. L. Tsai, "Repeatable nanostructures in dielectrics by femtosecond laser pulse trains," Applied Physics Letters, vol. 87, 2005, pp. 151104.
[58] L. Jiang, and H. L. Tsai, "Improved Two-Temperature Model and Its Application in Ultrashort Laser Heating of Metal Films," Journal of Heat Transfer, vol. 127 , 2005, pp. 1167-1173.
[59] L. Jiang, and H. L. Tsai, "Plasma modeling for ultrashort pulse laser ablation of dielectrics," Journal of Applied Physics, vol. 100, 2006, pp. 023116.
[60] A. Heltzel, A. Battula, J. R. Howell, and S. Chen, "Nanostructuring Borosilicate Glass With Near-Field Enhanced Energy Using a Femtosecond Laser Pulse," Journal of Heat Transfer, vol. 129, 2007, pp. 53-59.
[61] H.-Y. Tsai, S.-W. Luo, C.-W. Wu, and S.-H. Wang, "Sub-micron-structure machining on silicon by femtosecond laser," Transactions of Nonferrous Metals Society of China, vol. 19, 2009, pp. 171-177.
[62] A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, "Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses," Physical Review B, vol. 71, 2005, pp. 125435-11.
[63] M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, "Physical Factors Limiting the Spectral Extent and Band Gap Dependence of Supercontinuum Generation," Physical Review Letters, vol. 91, 2003, pp. 043905-4.
[64] A. Mermillod-Blondin, I. M. Burakov, R. Stoian, A. Rosenfeld, E. Audouard, N. Bulgakova, and I. V. Hertel, "Direct Observation of Femtosecond Laser Induced Modifications in the Bulk of Fused Silica by Phase Contrast Microscopy," Journal of Laser Micro/Nanoengineering, vol. 1, 2006, pp. 155-160.
[65] B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky, "Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters," Optical Materials Express, vol. 1, 2011, pp. 766-782.
[66] A. Saliminia, N. T. Nguyen, S.L. Chin, and R. Valle´e, "The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses," Optics Communications, vol. 241, 2004, pp. 529-538.
[67] M. J. DeWitt, and R. J. Levis, "Calculating the Keldysh adiabaticity parameter for atomic, diatomic, and polyatomic molecules," Journal of Chemical Physics, vol. 108, 1998, pp. 7739-7742.
[68] A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, "Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses," Physical Review B, vol. 61, 2000, pp. 11437-14.
[69] S. Passinger, "Two-Photon Polymerization and the application for Surface Plasmon Polaritons," Cuvillier Verlag, 2008, pp. 6-10.
[70] J. J. Serbin, "Fabrication of Photonic Structures by Two-Photon Polymerization," Cuvillier Verlag, 2004, pp. 51-56.
[71] A. Horn, E.W. Kreutz, and R. Poprawe, "Ultrafast time-resolved photography, of femtosecond laser induced modifications in BK7 glass and fused silica," Applied Physics A, vol. 79, 2004, pp. 923-925.
[72] B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-Induced Damage in dielectrics with nanosecond to sub-picosecond pulses," Physical Review Letters, vol. 74, 1995, pp. 2248-2251.
[73] M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, "Femtosecond Optical Breakdown in Dielectrics," Physical Review Letters, vol. 80, 1998, pp. 4076-4079.
[74] P. Jutzi, and U. Schubert, "Silicon chemistry: from the atom to extended systems," Wiley-VCH, 2003, pp. 28.
[75] A. Ivanov, "Simulation of Electrochemical Etching of Silicon with COMSOL," Proceedings of the 2011 COMSOL Conference, 2011.