簡易檢索 / 詳目顯示

研究生: 李永昇
Lee, Yung-Sheng
論文名稱: Synthesis of Catalyst-free beta-FeSi2 nanowires by Chemical Vapor Deposition
利用化學氣相沉積法製備beta-FeSi2
指導教授: 陳建瑞
Chen, Jiann-Ruey
鄧希平
Teng, Shi-Ping
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 75
中文關鍵詞: 化學氣象沉積法二矽化鐵
外文關鍵詞: CVD, FeSi2, EXAFS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般來說,金屬矽化物與純金屬比較,具有較好的熱穩定性和不容易被氧化的特性,且有較佳的抗腐蝕能力;大部分的金屬氧化物相對於金屬也具有較低的電阻。所以金屬矽化物也是第一個被用在 MOS 結構中的閘極(gate)、ohmic contacts 和 Scotty barriers 的材料。
    從 Fe-Si 的相圖中,在相圖兩側分別表示金屬含量比較高和 Si 含量比較高的區域,各別具有許多不同的相,顯示了 Fe、Si 系統在不同成分比例組成下的複雜性,例如 Fe3Si, FeSi2、Fe5Si3、FeSi…等;另一方面,即使具有相同的定量組成,也有可能因為其晶格或是電子結構的不同,使其具有不同的性質。
    雖然到目前為止,矽化鐵奈米結構的生成機制尚不明朗,但是有不同的報告指出在謹慎小心的控制溫度、壓力、載流氣體流量等基本參數,可以利用 CVD 合成出形貌為一維的奈米線或是奈米螺旋狀結構。
    我們注意到 beta-FeSi2 相較其他矽化物具有獨特的性質。根據理論計算和實驗數據都顯示 beta-FeSi2 對光有較高的吸收係數且較小的能階,其能階約為 0.85 eV,而 0.85 eV 對應到光波的波長為 1.5 μm。因此我們可以將 beta-FeSi2 與其他具有不同能階的矽化物合成在同一個 Si 晶片上,應用到許多不同的領域,例如紅外光偵測器、光電元件。
    在本研究中,beta-FeSi2 奈米線是經由化學氣相沈積法(Chemical Vapor Deposition)來合成。在 700 ~ 900 ℃ 的溫度範圍間,經由載流氣體(carrier gas)將 FeCl3 前驅物運送到 Si 基板處反應生成 β 相的 FeSi2 , beta-FeSi2 的結構可以經由 XRD 和 TEM 的分析交互比對來獲得證實,且其結構的形貌也可經由 SEM 直接觀測。綜合以上分析,在 700 ~ 900 ℃ 的溫度之間 我們找到一個穩定的方法來合成 beta-FeSi2 奈米線。


    In this study, FeSi nanowires were fabricated by chemical vapor deposition method. Beta-FeSi2 nanowires were deposited on Si substrate by applying FeCl3 as precursor at temperature ranged from 700 to 900 ℃. The structure of beta-FeSi2 nanowire was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface morphology were analyzed by scanning electron microscopy (SEM). This study provide a stable and catalyst-free procedure for beta-FeSi2 nanowire at temperature ranged from 700 to 900 ℃.
    Metal Silicides are characterized by their high thermal stability and better resistance against oxidation than pure metals. Most of them are metallic and have low resistivity. Exactly metallic silicides were first employed for interconnections, gate in MOS structures, ohmic contacts, and Scotty barriers.
    From the Fe-Si phase diagram, numerous specific phase has been identified in both metal-rich and silicon-rich regions. They clearly demonstrate which definitely shows the complexity of the system with different chemical compositions such as Fe3Si, FeSi2, Fe5Si3, FeSi…etc. In addition, even with the same stoichiometry samples might possess diverse properties due to their lattice and electronic structure.
    Even if the growth mechanism is not yet fully recognized, it was reported that morphology of one dimension FeSi nanowires [1] and FeSi spiral structure [2] could be acquired by chemical vapor deposition (CVD) under certain condition with careful control of temperature, pressure and the flow rate of carrier gas.
    The fantastic features of beta-FeSi2 were thoroughly investigated. The theoretical prediction and experimental results show that beta-FeSi2 has a high optical coefficient as well as a direct band gap of ~ 0.85 eV [3] , which corresponding to the optical wavelength of 1.5 μm. As a result, we can mixing beta-FeSi2 with other silicides with various gaps integrated on a single silicon chip and offers potential applications in areas, such as infrared light detectors, opto-electric devices, and photovoltaics.

    中文摘要 I Abstract III 目錄 V 圖目錄 VII 表目錄 IX 第1章. 簡介 1 1.1. 簡介:半導體元件 1 1.1.1. 元件的組成 2 1.2. 簡介:奈米技術的發展 2 1.2.1. 一維的奈米結構 3 1.3. 簡介:矽化物 4 1.4. 矽化物的應用 5 1.5. 簡介:金屬矽化物材料 5 1.5.1. Fe/Si 系統 5 1.5.2. β-FeSi2 簡介 7 1.5.3. Small mismatch of β-FeSi2 with Si wafer 8 1.6. 簡介:奈米線的合成方法和成長機制 10 1.6.1. 化學氣相沈積簡介 (CVD) 10 1.6.1.1. CVD原理 10 1.6.1.2. CVD反應機制 11 1.6.1.3. CVD的種類與比較 11 1.6.1.4. 大氣壓化學氣相沈積系統 12 1.6.1.5. 低壓化學氣相沈積系統 13 1.6.1.6. 電漿輔助化學氣相沈積系統 14 1.6.2. Vapor-Liquid-Solid 成長機制 15 1.6.3. Solution-Liquid-Solid 成長機制 17 1.6.4. Solid-Liquid-Solid 成長機制 18 1.6.5. Vapor-Solid 成長機制 19 1.6.6. Oxide-Assisted 成長機制 20 1.7. 簡介:奈米線的電性量測 22 1.8. 研究動機 23 第2章. 實驗方法 25 2.1. 化學試藥 25 2.2. 實驗材料及設備 25 2.3. 分析儀器 25 2.4. 實驗步驟 26 2.4.1. 試片清洗 26 2.4.2. 石英管的清洗 26 2.4.3. 壓力及流量的控制 26 2.4.4. 爐管加熱 26 2.4.5. 退火 27 2.4.6. 實驗內容 27 第3章. 分析方法 28 3.1. X-ray Diffraction (XRD) 28 3.2. Scanning electron microscopy (SEM) 29 3.3. Energy dispersive x-ray spectroscopy (EDX or EDS) 29 3.4. Transmission electron microscopy (TEM) 29 3.5. Energy spectroscopy for chemical analysis (ESCA) 29 3.6. XES & XAS & PL & field emission (visible optical spectrum may not be applied) 30 第4章. 實驗分析結果 31 4.1. 溫度的影響 32 4.1.1. XRD 32 4.1.2. SEM 38 4.1.3. ESCA 41 4.2. 反應時間的影響 45 4.2.1. XRD 45 4.2.2. SEM 47 4.2.3. ESCA 51 4.3. 載流氣體流量的影響 55 4.3.1. XRD 55 4.3.2. SEM 56 4.3.3. ESCA 58 4.4. TEM 分析 62 第5章. 實驗討論 64 第6章. 總結 71 參考文獻 72

    1. Schmitt, A.L., et al., Synthesis and Properties of Single-Crystal FeSi Nanowires. Nano Lett, 2006. 6(8): p. 1617-21.
    2. Bierman, M.J., et al., Dislocation-Driven Nanowire Growth and Eshelby Twist. Science, 2008. 320(5879): p. 1060-3.
    3. Kakemoto, H., et al., Synthesis and Properties of Semiconducting Iron Disilicide Beta-FeSi2. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1999. 38(9A): p. 5192-5199.
    4. 2000 Electronic Market Data Book. 2000, Electron. Ind. Assoc.: Washington, D.C.
    5. 2000 Semiconductor Industry Report. 2000, Ind. Technol. Res. Inst.: Hsinchu, Taiwan.
    6. Most of the Classic Device Papers Are Collected in S. M. Sze, Ed., in Semiconductor Devices: Pioneering Papers. 1991, World Sci.: Singapore.
    7. Ng, K.K., Complete Guild to Semiconductor Devices. 1995, New York: McGraw-Hill.
    8. Lieber, C.M. One-Dimensional Nanostructures: Chemistry, Physics & Applications. 1998.
    9. M. Wilson, K.K.G.S., M. Simmons and B. Raguse, Nanotechnology Basic Science Emerging Technologies. 2002, CRC: New York.
    10. Meindl, J.D., Q. Chen, and J.A. Davis, Limits on Silicon Nanoelectronics for Terascale Integration. Science, 2001. 293(5537): p. 2044-9.
    11. Lieber, C.M., The Incredible Shrinking Circuit. Sci Am, 2001. 285(3): p. 58-64.
    12. Drexler, K.E., Engines of Creation, the Coming Era of Nanotechnology, in Anchor Press. 1986: New York.
    13. Gudiksen, M.S., et al., Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics. Nature, 2002. 415(6872): p. 617-20.
    14. Desimoni, J., et al., Ion-Beam Synthesis of Cubic FeSi2. Applied Physics Letters, 1993. 62(3): p. 306-308.
    15. Vonkanel, H., et al. Epitaxial Phase-Transitions in the Iron Silicon System. 1993.
    16. Alvarez, J., et al. Determination of the Fe/Si(111) Phase-Diagram by Means of Photoelectron Spectroscopies. 1993: Elsevier Science Bv.
    17. Christensen, N.E., Electronic-Structure of Beta-FeSi2. Physical Review B, 1990. 42(11): p. 7148-7153.
    18. M. Libezny, J.P., T. Vermeulen, J. Nijs, P. H. Amesz, K. Herz, and M. Powalla, Book of Abstracts of 13th European Photovoltaic Solar Energy Conference and Exhibition. 1995, PO8B.
    19. Katsumata, H., et al., Optical Absorption and Photoluminescence Studies of Beta-FeSi2 Prepared by Heavy Implantation of Fe+ Ions into Si. Journal of Applied Physics, 1996. 80(10): p. 5955-5962.
    20. Katsumata, H., et al., Effect of Multiple-Step Annealing on the Formation of Semiconducting Beta-FeSi2 and Metallic Alpha-Fe2si5 on Si(100) by Ion Beam Synthesis. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1997. 36(5A): p. 2802-2812.
    21. M. Libezny, J.P., T. Vermeulen, J. Nijs, P. H. Amesz, K. Herz, and M. Powalla, in Proc. of 13th European Photovoltaic Solar Energy Conf. . 1995. p. 1326.
    22. Riffel, M., E. Gross, and U. Stohrer, Electrical Contacts for FeSi2 and Higher Manganese Silicide Thermoelectric Elements. Journal of Materials Science-Materials in Electronics, 1995. 6(3): p. 182-185.
    23. Yang, Z., et al., Optical-Absorption Study of Ion-Beam Synthesized Polycrystalline Semiconducting FeSi2. Journal of Applied Physics, 1995. 78(3): p. 1958-1963.
    24. Eppenga, R., Abinitio Band-Structure Calculation of the Semiconductor Beta-FeSi2. Journal of Applied Physics, 1990. 68(6): p. 3027-3029.
    25. Dimitriadis, C.A., et al., Electronic-Properties of Semiconducting FeSi2 Films. Journal of Applied Physics, 1990. 68(4): p. 1726-1734.
    26. Bost, M.C. and J.E. Mahan, A Clarification of the Index of Refraction of Beta-Iron Disilicide. Journal of Applied Physics, 1988. 64(4): p. 2034-2037.
    27. Arushanov, E., et al., Photoconductivity in N-Type Beta-FeSi2 Single-Crystals. Physical Review B, 1995. 52(1): p. 20-23.
    28. Miya, T., et al., Ultimate Low-Loss Single-Mode Fiber at 1.55 μm. Electronics Letters, 1979. 15(4): p. 106-108.
    29. Derrien, J., et al. Semiconducting Silicide Silicon Heterostructures - Growth, Properties and Applications. 1992.
    30. Lange, H., Electronic Properties of Semiconducting Silicides. Physica Status Solidi B-Basic Research, 1997. 201(1): p. 3-65.
    31. Gross, E., M. Riffel, and U. Stohrer, Thermoelectric Generators Made of FeSi2 and Hms - Fabrication and Measurement. Journal of Materials Research, 1995. 10(1): p. 34-40.
    32. H. Katsumata, H.L.S., N. Kobayashi, Y. Makita, M. Hasegawa, H. Shibata, S. Kimura, A. Obara, and S. Uekusa. in Proc. 9th International Conference on Ion Beam Modification of Materials. 1996. New York: Elserier Science.
    33. Leong, D., et al., A Silicon/Iron-Disilicide Light-Emitting Diode Operating at a Wavelength of 1.5μm. Nature, 1997. 387(6634): p. 686-688.
    34. Suemasu, T., et al., Room Temperature 1.6 Mu M Electroluminescence from a Si-Based Light Emitting Diode with Beta-FeSi2 Active Region. Japanese Journal of Applied Physics Part 2-Letters, 2000. 39(10B): p. L1013-L1015.
    35. P. Yang, Y.W.a.R.F., Inorganic Semiconductor Nanowires. Inter. J. Nano., 2002. 1: p. 1-39.
    36. Wu, Y.Y., et al., Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties. Chemistry-a European Journal, 2002. 8(6): p. 1261-1268.
    37. Yang, P.D., et al., Controlled Growth of Zno Nanowires and Their Optical Properties. Advanced Functional Materials, 2002. 12(5): p. 323-331.
    38. Wong, E.W., P.E. Sheehan, and C.M. Lieber, Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science, 1997. 277(5334): p. 1971-1975.
    39. Wu, Y.Y., B. Messer, and P.D. Yang, Superconducting MgB2 Nanowires. Advanced Materials, 2001. 13(19): p. 1487-+.
    40. Wu, Y.Y. and P.D. Yang, Direct Observation of Vapor-Liquid-Solid Nanowire Growth. Journal of the American Chemical Society, 2001. 123(13): p. 3165-3166.
    41. Chen, C.C. and C.C. Yeh, Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires. Advanced Materials, 2000. 12(10): p. 738-+.
    42. Huang, M.H., et al., Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Advanced Materials, 2001. 13(2): p. 113-116.
    43. Yazawa, M., et al., Effect of One Monolayer of Surface Gold Atoms on the Epitaxial-Growth of Inas Nanowhiskers. Applied Physics Letters, 1992. 61(17): p. 2051-2053.
    44. Wu, Y.Y., R. Fan, and P.D. Yang, Block-by-Block Growth of Single-Crystalline Si/Sige Superlattice Nanowires. Nano Letters, 2002. 2(2): p. 83-86.
    45. Choi, Y.C., et al., Catalytic Growth of Beta-Ga2O3 Nanowires by Arc Discharge. Advanced Materials, 2000. 12(10): p. 746-+.
    46. Duan, X.F. and C.M. Lieber, General Synthesis of Compound Semiconductor Nanowires. Advanced Materials, 2000. 12(4): p. 298-302.
    47. Morales, A.M. and C.M. Lieber, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science, 1998. 279(5348): p. 208-211.
    48. Trentler, T.J., et al., Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors - an Analogy to Vapor-Liquid-Solid Growth. Science, 1995. 270(5243): p. 1791-1794.
    49. Wagner, R.S. and W.C. Ellis, Vapor-Liquid-Solid Mechanism of Single Crystal Growth ( New Method Growth Catalysis from Impurity Whisker Epitaxial + Large Crystals Si E ). Applied Physics Letters, 1964. 4(5): p. 89-&.
    50. Westwater, J., et al., Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction. Journal of Vacuum Science & Technology B, 1997. 15(3): p. 554-557.
    51. Zhu, Y.Q., et al., 3d Silicon Oxide Nanostructures: From Nanoflowers to Radiolaria. Journal of Materials Chemistry, 1998. 8(8): p. 1859-1864.
    52. Liu, Z.Q., et al., Synthesis of Alpha-SiO2 Nanowires Using Au Nanoparticle Catalysts on a Silicon Substrate. Journal of Materials Research, 2001. 16(3): p. 683-686.
    53. Skuja, L. Optically Active Oxygen-Deficiency-Related Centers in Amorphous Silicon Dioxide. 1998.
    54. Yan, H.F., et al., Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism. Chemical Physics Letters, 2000. 323(3-4): p. 224-228.
    55. Yu, D.P., et al., Controlled Growth of Oriented Amorphous Silicon Nanowires via a Solid-Liquid-Solid (Sls) Mechanism. Physica E, 2001. 9(2): p. 305-309.
    56. Zakharov, N.D., et al., Growth Phenomena of Si and Si/Ge Nanowires on Si(111) by Molecular Beam Epitaxy. Journal of Crystal Growth, 2006. 290(1): p. 6-10.
    57. Kar, S., et al., One-Dimensional Zno Nanostructure Arrays: Synthesis and Characterization. Journal of Physical Chemistry B, 2006. 110(10): p. 4605-4611.
    58. Lan, Z.H., et al., Nanohomojunction (Gan) and Nanoheterojunction (Inn) Nanorods on One-Dimensional Gan Nanowire Substrates. Advanced Functional Materials, 2004. 14(3): p. 233-237.
    59. Chan, S.K., et al. Molecular Beam Epitaxy-Grown Znse Nanowires. 2006.
    60. Yin, Y.D., G.T. Zhang, and Y.N. Xia, Synthesis and Characterization of Mgo Nanowires through a Vapor-Phase Precursor Method. Advanced Functional Materials, 2002. 12(4): p. 293-298.
    61. Zhang, R.Q., Y. Lifshitz, and S.T. Lee, Oxide-Assisted Growth of Semiconducting Nanowires. Advanced Materials, 2003. 15(7-8): p. 635-640.
    62. Shi, W.S., et al., Free-Standing Single Crystal Silicon Nanoribbons. Journal of the American Chemical Society, 2001. 123(44): p. 11095-11096.
    63. Lee, S.T., N. Wang, and C.S. Lee. Semiconductor Nanowires: Synthesis, Structure and Properties. 2000.
    64. Wang, N., et al., Si Nanowires Grown from Silicon Oxide. Chemical Physics Letters, 1999. 299(2): p. 237-242.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE