簡易檢索 / 詳目顯示

研究生: 郭哲銘
Kuo, Je Ming
論文名稱: 研究表面覆蓋層對鉛金合金薄膜能帶結構的影響
Investigating the Capping-layer effect on the PbAu alloy layer
指導教授: 唐述中
Tang, Shu Jung
口試委員: 鄭弘泰
Jeng, Horng Tay
鄭澄懋
Cheng, Cheng Maw
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 60
中文關鍵詞: ARPESLEEDRashba effect鉛金合金
外文關鍵詞: ARPES, LEED, giant Rashba effect, PbAu alloy
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   實驗室所研究的鉛金合金有極大的Rashba effect,本論文主要研究合金表面覆蓋層對其能帶結構的影響。先前研究合金薄膜時覆蓋層為金原子,為了驗證覆蓋層的影響,我們將覆蓋層改為鉍原子,利用角解析光電子能譜(ARPES)與低能量電子繞射儀(LEED)觀察合金薄膜隨蒸鍍鉍的變化。本實驗主要利用熱蒸鍍方式成長合金薄膜,在室溫與低溫下蒸鍍鉍原子。由實驗結果顯示,室溫下蒸鍍鉍原子能帶給底下合金層Rashba effect,得到與用金當覆蓋層相似的能帶結構。藉由分析合金能帶強度的變化,顯示出合金能帶隨鉍蒸鍍量增加而增強,證實覆蓋層的重要性;另一方面,低溫下鍍鉍無法得到合金能帶結構,從LEED與理論計算模型的探討,我們推測可能是覆蓋層原子排列位置不對。
      從上述實驗中,我們證實能藉由改變覆蓋層的原子來調控合金的Rashba effect,使其能帶結構改變,且覆蓋層原子需排列在特定位置才行,此結果顯示我們理論計算模型是正確的。另外從鉛單晶與鉛薄膜實驗的比較,我們推測Rashba參數α_R極可能隨覆蓋層原子改變,顯示調控Rashba effect的可行性。


    The previous research shows that that a binary alloy composed of heavy atoms, Pb and Au, has large Rashba effect, yielding two cones at Γ ̅ and two giant Rashba splitting at M ̅. Experiments and first-principles calculations of the electronic structure indicated that such a Rashba effect may be produced only via a special buckling configuration induced by squeezing from the top Au capping layers and bottom Pb films. In this research, we demonstrated that with Bi as the capping layer on PbAu alloy, the Rashba effect is reproduced as well. This result means that Rashba-splitting band structure of PbAu alloy layer is caused by a capping layer on the top, which breaks the inversion symmetry and enhances the buckling height.
    We tried to deposit Bi onto PbAu alloy layer at Room temperature and low temperature, T = -130 ˚C, respectively and found that Rashba-splitting band structure only showed up at room temperature. It means that the atoms of capping layer must be at specific locations that are commensurate with Au atoms of alloy. In addition, we found that the binding energy of Rashba-splitting band structure shifted into higher binding energy and dispersion changed, indicating that we can use different kinds of atoms as the capping layer to tune the Rashba effect of the middle alloy.

    摘要 i Abstract ii 致謝 iv 目錄 vi 圖目錄 ix 表目錄 xiv 第一章 緒論 1 1.1前言 1 1.2研究動機 2 第二章 基本原理與文獻回顧 3 2.1晶體與晶面 3 2.2倒晶格 4 2.3能帶結構 5 2.4光電子能譜 6 2.5 自旋軌道耦合 8 2.5.1 Rashba effect 9 2.5.2 Kramers degeneracy theorem 12 2.6文獻回顧 14 2.7鉛金合金 16 第三章 儀器原理介紹 23 3.1實驗環境 23 3.1.1大氣至中度真空(Medium vacuum) 23 3.1.2高真空(High vacuum) 23 3.1.3超高真空(Ultra-High vacuum) 24 3.2低能量電子繞射儀 24 3.3角解析光電子能譜儀 26 3.4紫外光源 28 第四章 樣品製備與實驗 29 4.1合金成長在鉛單晶上 30 4.1.1樣品製備 30 4.1.2實驗結果 30 4.2合金成長在鉛薄膜/鉛潤濕層/鍺(111) 33 4.2.1樣品製備 33 4.2.2實驗結果 33 4.2.3能量分佈曲線 37 4.3室溫下鉍鉛金合金成長在鉛薄膜/金潤濕層/鍺(111) 38 4.3.1樣品製備 38 4.3.2實驗結果 39 4.3.3能量分佈曲線 42 4.4低溫下鉍鉛金合金成長在鉛薄膜/金潤濕層/鍺(111) 44 4.4.1樣品製備 44 4.4.2實驗結果 44 4.4.3能量分佈曲線 46 第五章 實驗結果討論與結論 48 5.1合金成長在鉛薄膜/鉛潤濕層/鍺(111)強度比 48 5.2室溫下鉍鉛金合金成長在鉛薄膜/金潤濕層/鍺(111)強度比 50 5.3Rashba parameter探討 52 5.4覆蓋層原子排列位置探討 54 第六章 結論 57 第七章 參考文獻 58

    1.https://en.wikipedia.org/wiki/MOSFET
    2.S. Datta, B. Das, “Electronic analog of the electro-optic modulator”, Appl. Phys. Lett., vol. 56, (1990), 665-667
    3.S. Gong, H. Ding, W. Zhu, C. Duan, Z. Zhu, J. Chu, “A new pathway towards all-electric spintronics: electric-field control of spin states through surface/interface effects”, Sci. China: Phys. Mech. Astron, vol. 56, (2013), 232-244
    4.F. Mireles, G, Kirczenow, “Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires”, Phys. Rev. B, vol. 64, (2001), 024426
    5.J.C. Rojas Sa’nchez, L. Vila, G. Desfonds, S. Gambarelli, J.P. Attane, J.M. De Teresa, C. Mage’n, A. Fert, “Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials”, Nat. Commun., vol. 4, (2013), 2944
    6.Steven H. Simon, The Oxford Solid State Basics, Oxford University Press, (2013)
    7.Harald Ibach, Hans Lüth, Solid-State Physics, 4th edition, Springer, (2009)
    8.S. Hüfner, Photoelectron Spectroscopy: Principle and Application, 3rd edition, Springer
    9.Andrea Damascelli, Phys. Scr. T109, 61-74, 2004
    10.Seah, M. P. and Dench, W. A., Surf. Interface Anal. 1, 2 (1979)
    11.Bercioux, Dario. “Spin-orbit interactions in semiconductor nanostructures.”
    12.Wei-Chuan Chen, “Study of the interfacial effects on the growth of Pb thin films on Ge(111) by ARPES and LEED”, Master thesis, National Tsing Hua University, (2012)
    13.Sun-Ting Tsai, “Study of spin, electronic, and lattice structures of a Quasi-Topological-Insulator alloy thin film”, Master thesis, National Tsing Hua University, (2013)
    14.W.-C. Chen, T.-R. Chang, S.-T. Tsay, Sh. Yamamoto, J.-M. Kuo, C.-M. Cheng, K.-D. Tsuei, K. Yaji, H. Lin, H.-T. Jeng, C.-Y. Mou, I. Matsuda, S.-J. Tang. “Dirac cones induced by significantly enhanced giant Rashba splitting in a thin film of binary alloy” (published)
    15.K. Miyamoto, T. Okuda, M. Nurmamat, M. Nakatake, H. Namatame, M. Taniguchi, E. V. Chulkov, K. A. Kokh, O. E. Tereshchenko, A. Kimura, “The gigantic Rashba effect of surface states energetically buried in the topological insulator Bi2Te2Se”, New J. Phys., vol. 16, (2014), 065016
    16.G. Ertl, J. Küppers, Low Energy Electrons and Surface Chemistry, VCH, Weinheim, (1985)
    17.User Manual SCIENTA R3000, VG SCUENTA
    18.User Manual HIS 13 VUV lamp, Omicron Nano Technology
    19.S.-J. Tang, C.-Y. Lee, C.-C. Huang, T.-R. Chang, C.-M. Cheng, K.-D. Tsuei, H.-T. Jeng, V. Yeh, T.-C. Chiang, “Electronic versus Lattice Match for Metal-Semiconductor Epitaxial Growth: Pb on Ge(111)”, Phys. Rev. Lett., vol. 107, (2011), 066802
    20.Ming-Kuan Tai, “Probing the surface state at the surface zone boundary of Pb(111) surface induced by the adsorption of Au”, Master thesis, National Tsing Hua University, (2015)
    21.K. Wurde, A. Mazur, J. Pollmann, “Surface electronic structure of Pb(001), Pb(110), and Pb(111)”, Phys. Rev. B, vol. 49, (1994), 7679
    22.C. R. Ast, J. Henk, A. Ernst, L. Moreschini, M. C. Falub, D. Pacile´, P. Bruno, K. Kern, M. Grioni, “Giant Spin Splitting through Surface Alloying”, Phys. Rev. Lett., vol. 98, (2007), 186807
    23.G. Bian, X. Wang, T. Miller, T.-C. Chiang, “Origin of giant Rashba spin splitting in Bi/Ag surface alloys”, Phys. Rev. B, vol. 88, (2013), 085427
    24.I. Gierz, B. Stadtmüller, J. Vuorinen, M. Lindroos, F. Meier, J. H. Dil, K. Kern, C. R. Ast, “Structural influence on the Rashba-type spin splitting in surface alloys”, Phys. Rev. B, vol. 81, (2010), 245430
    25.H. Oughaddou, C. Le´andri, B. Aufray, C. Girardeaux, J. Bernardini, G. Le Lay, J.P. Bibe´rian, N. Barrett, “Growth and dissolution kinetics of Au/Pb(1 1 1): an AES-LEED study”, Appl. Surf. Sci., vol. 212-213, (2003), 291-295
    26.Y. Qi, W. Yang, X. Ma, S. Ji, Y. Fu, Y. Zhang, J.-F. Jia, Q.-K. Xue, “A study of the surface structure of deposited Au onPb film”, J. Phys.: Condens. Matter, vol. 19, (2007), 136005
    27.Y. Yu, Z. Tang, Y. Jiang, D. Fujita, “Surface alloying effects in the growth of Au on Pb(111) thin film”, Surface Science, vol. 602, (2008), 3358–3363
    28.T. Arakane, T. Sato, S. Souma, K. Kosaka, K. Nakayama, M. Komatsu, T. Takahashi, Z. Ren, K. Segawa, Y. Ando, “Tunable Dirac cone in the topological insulator Bi2-xSbxTe3-ySey”, Nat. Commun., vol. 3, (2012), 636
    29.Bychkov, Y. A., E. I. Rashba, “Properties of a 2D electron gas with lifted spectral degeneracy”, JETP Lett., vol. 39, (1984), 78
    30.M. Hoesch, M. Muntwiler, V. N. Petrov, M. Hengsberger, L. Patthey, M. Shi, M. Falub, T. Greber, J. Osterwalder, “Spin structure of the Shockley surface state on Au(111)”, Phys. Rev. B, vol. 69, (2004), 241401

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE