簡易檢索 / 詳目顯示

研究生: 羅仁和
Jen-Ho Lo
論文名稱: 泊松能斯特普朗克的尺寸修正模型
Size-Modified Poisson-Nernst-Planck Model
指導教授: 劉晉良
Jinn-Liang Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 27
中文關鍵詞: 離子通道有限尺寸二階收斂性
外文關鍵詞: ion channel, finite size, second-order convergent
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 泊松能斯特普朗克(PNP)模型是一個在開放離子通道的離子流之連續的基本模
    型模擬。靜電,密度分佈和擴散的影響有限粒徑離子溶液[8]的研究一直是長期存在的話題。泊松方程是推導庫侖律的靜電與在微積分中的高斯定理而得到的。能斯特普朗克方程是對流擴散的模型。一個熵的函數解釋了Borukhov[1]等人所提出在泊松波茲曼(PB)方程中,電解質離子在有限尺寸下的影響,並且由Lu 和Zhou [8]推廣至泊松能斯特普朗克(PNP)模型。我們的有限尺寸線性PNP 模型利用正解而得到二階收斂性結果。對於非線性有限尺寸PNP 模型利用正解,數值誤差幾乎為零。


    The Poisson-Nernst-Planck (PNP) model is a basic continuum model for simulating ionic flows in an open ion channel. The effects of finite particle size on electrostatics, density profile, and diffusion have been a long existing topic in the study of ionic solution [8]. The Poisson equation is derived from Coulomb's law in electrostatics and Gauss's theorem in calculus. The Nernst-Planck equation is equivalent to the convection-diffussion model. An entropy functional that accounts for the finite size effects of ions in electrolytes proposed by Borukhov et al. [1] for the Poisson-Boltzmann (PB) equation has been generalized by Lu and Zhou [8] to the PNP model. We obtain second-order convergent results for the finite size linear PNP model with exact solutions.
    For nonlinear finite size PNP model with exact solutions, the numerical errors are almost zero.

    1 Introductio 1 2 Methods 2 2.1 Poisson-Nernst-Planck model . . . . . . . . .2 2.2 SMNP equations . . . . . . . . . . . . . . . . . . . 3 2.3 Numerical implementation . . . . . . . . . . . . . . . . . . . . 4 2.3.1 Matched interface and boundary method . . . . . . 4 2.3.2 FDM for SMNP equations . . . . . . . . . . . . . 8 2.3.3 The decomposition of electrostatic potential . . 11 2.3.4 Diffusion function . . . . . . . . . . . . . . 13 2.3.5 Exact solution . . . . . . . . . . . . . . 14 2.4 Gummel schemes . . . . . . . . . . . . . . . . . . . 16 3 Numerical Results 17 4 Conclusions 21 5 References 22

    [1] I. Borukhov, D. Andelman, and H. Orland, Steric e¤ects in electrolytes: A modi…ed
    Poisson-Boltzmann equation, Phys. Rev. Lett. 79 (1997) 435–438.
    [2] D. P. Chen, V. Barcilon, and R. S. Eisenberg, Constant …elds and constant gradients
    in open ionic channels, Biophys. J. 61 (1992) 1372–1393.
    [3] D. Chen, and G.-W.Wei, Quantum dynamicsin continuum for ion channel transport,
    preprint (2010).
    [4] I-L. Chern, J.-G. Liu, and W.-C. Wang, Accurate evaluation of electrostatics for
    macromolecules in solution, Methods Appl. Anal. 10 (2003) 309–328.
    [5] R. S. Eisenberg, Multiple scales in the simulation of ion channels and proteins, J.
    Phys. Chem. C 114 (2010) 20719–20733.
    [6] B. Hille, Ionic Channels of Excitable Membranes, 3rd Ed., Sinauer Associates Inc.,
    Sunderland, MA, 2001.
    [7] J.-L. Liu, Lecture Notes on Poisson-Nernst-Planck Modeling and Simulation of Bio-
    logicalIon Channels, 2012.
    [8] B. Lu and Y. C. Zhou, Poisson-Nernst-Planck Equations for simulating biomolec-
    ular di¤usion-reaction processes II: Size e¤ects on ionic distributions and di¤usion-
    reaction rates, Preprint (2011).
    [9] Popular Information, Nobelprize.org. 18 Jan 2011, http://nobelprize.org/ no-
    bel_prizes/chemistry/laureates/2003/public.html.
    [10] Q. Zheng, D. Chen, and G.-W. Wei, Second-order Poisson Nernst-Planck solver for
    ion channel transport, J. Comp. Phys. 230 (2011) 5239-5262.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE