研究生: |
劉紘宇 Hung-Yu Liu |
---|---|
論文名稱: |
無暫停定速比共軛凸輪之輪廓設計與最佳化 |
指導教授: |
吳隆庸
Long-Iong Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 無暫停 、定速比 、共軛凸輪 、搖擺滾子從動件 、向量表示法 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文所探討之無暫停定速比共軛凸輪,使用搖擺滾子從動件共軛凸輪向量表示法,配合加速度為零與無暫停之位移運動曲線,可獲得原始的共軛凸輪輪廓。考慮凸輪帶動滾子轉動之軌跡,若將位移運動曲線加以延伸,可對原始輪廓不連續處加以連接,形成完整之共軛凸輪輪廓。在設計參數的部分,主要參數有軸心距、速比、搖臂長度、凸輪齒數、滾子半徑等。以上參數對於凸輪輪廓所產生的影響,亦加以討論。至於共軛凸輪輪廓設計參數之最佳化,以壓力角曲線之等效最大值最小化為目標。最佳化之拘束條件有:壓力角最大值須小於30°、避免凸輪輪廓過切、避免同層相鄰滾子干涉、限制滾子中心軌跡等;設計變數為速比、凸輪齒數、搖臂長度與滾子半徑等四個變數。以全域搜尋之方式尋找不同速比與凸輪齒數下之壓力角最佳值。因具有壓力角最佳值之參數組合並非唯一,故加入接觸比拘束條件再次進行最佳化,可得到完整之最佳化結果。最後並將無暫停定速比共軛凸輪與正齒輪進行比較。
[1] 顏鴻森,機構學,東華書局,台北,1999。
[2] K. J. Waldron and G. L. Kinezl, Kinematics, Dynamics, and Design of Machinery, John Wiley & Sons, New York, 1999.
[3] F. Y. Chen, Mechanics and Design of Cam Mechanisms, Pergamon, New York, 1982.
[4] P. W. Jensen, Cam Design and Manufacture, 2nd edition, Marcel Dekker, New York, 1987.
[5] H. Makino, "Design Restrictions for the Parallel Index Cam (Part 1)", Journal of Japanese Society of Precision Engineering (In Japanese), Vol. 38, No. 8, 1972, pp. 638-644.
[6] H. Makino, "Design Restrictions for the Parallel Index Cam (Part 2)", Journal of Japanese Society of Precision Engineering (in Japanese), Vol. 38, No. 11, 1972, pp. 929-932.
[7] H. Makino, "Basic Analysis and Optimal Design of In-line Transfer Indexing Cam", Journal of Japanese Society of Precision Engineering (in Japanese), Vol. 45, No. 7, 1979, pp. 833-838.
[8] T. Maeda and H. Makino, "Basic Analysis and Optimal Design of Internal Parallel Indexing Cam", Journal of Japanese Society of Precision Engineering (in Japanese), Vol. 46, No. 10, 1980, pp. 1297-1302.
[9] G. Peng, Z. Xiao and H. Tian, "Optimal Configurations for parallel Shaft Indexing Mechanisms", Mechanism and Machine Theory, Vol. 23, No. 4, 1988, pp. 313-318.
[10] 林逸仁,平行分度凸輪之最佳化設計,碩士論文,國立清華大學,新竹,1993。
[11] 林宏宇,擺動式滾子從動件共軛板凸輪之最佳化設計,碩士論文,國立清華大學,新竹,1993。
[12] M. A. Gonz□lez-Palacios and J. Angeles, "The Generation of Contact Surfaces of Indexing Cam Mechanisms - A Unified Approach", Journal of Mechanical Design, Vol. 116, pp. 369-374, 1994.
[13] 吳隆庸,洪嘉宏,張信良,"盤形凸輪輪廓的向量式表示法",技術學刊,17卷,1期,59-65頁,2002。
[14] L. I. Wu, "Calculating conjugate cam profiles by vector equations", Journal of Mechanical Engineering Science, Vol. 217, No. 10, pp. 1117 - 1123, 2003.
[15] C. E. Wilson and J. P. Sadler, Kinematics and Dynamics of Machinery, 2nd edition, Harper Collins, New York, 1991.
[16] G. J Etgen, Salas and Hille’s Calculus, 7th edition, John Wiley and & Sons, New York, 1995.
[17] F. L. Litvin, Gear Geometry and Applied Theory, Prentice-Hall, New Jersey, 1994.
[18] D. B. Dooner and A. A. Seireg, The Kinematic Geometry of Gearing, John Wiley and & Sons, New York, 1995.
[19] 小栗富士雄、小栗達男 著,黃炎森 譯,標準機械設計圖表便覽,第三版,眾文圖書,台北,1993。
[20] J. S. Arora, Introduction to Optimum Design, McGraw-Hill, New York, 1989.