研究生: |
簡馨綺 Chien, Hsing-Ghi |
---|---|
論文名稱: |
以溶膠凝膠法製備氧化鎳鈷氣凝膠及其複合材料於產氧及儲能之應用 Nickel Cobaltite and Its Composite Materials Prepared with Sol-Gel Methods for Applications in Oxygen Evolution Reaction and Energy Storage Systems |
指導教授: |
呂世源
Lu, Shih-Yuan |
口試委員: |
裘性天
胡啟章 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 產氧 、儲能 、氣凝膠 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功以溶膠-凝膠法製備出氧化鎳鈷氣凝膠,未經鍛燒處理已具有normal-spinel結構之晶相,其比表面積達156 m2/g,經200℃鍛燒處理後,表面積仍有134 m2/g,隨著鍛燒溫度增加,比表面積跟著下降,晶相也有轉移變化。當鍛燒至400℃時,NiCo2O4晶相轉移成inverse-spinel,對氧氣產生效率(oxygen evolution reaction, OER)也造成影響。於電解液1 M KOH中,進行線性循環伏安掃描與其他鍛燒溫度進行比較,可知熱處理200℃時,OER有最佳效率,其Tafel slope,b值為59 mV/dec,而電流密度100 mA時過電位η則是0.184 V,相較於其他文獻上所使用之不同結構NiCo2O4,本研究使用的氣凝膠有著相當好的效率。氧化鎳鈷乾凝膠,同氣凝膠,未經鍛燒處理亦具有normal-spinel結構之晶相,經200℃鍛燒處理後,表面積為113 m2/g,與其他鍛燒溫度比較,熱處理200℃之樣品OER有著最佳效率,其b值為62 mV/dec,η為0.227 V。
仿效文獻以熱沉積方式製備出具inverse-spinel結構的氧化鎳鈷奈米顆粒,並與氧化鎳鈷氣凝膠及乾凝膠效率最佳兩組做比較分析。由熱沉積法製備出的奈米顆粒,由於經過600℃高溫鍛燒,使得孔洞體積極小,僅有0.097 cc/g,比表面積為13 m2/g,因此其OER效率不如其他兩者佳,其產氧初始電壓為0.47 V,b值為81 mV/dec,η為0.379 V。因此,本研究中,由溶膠-凝膠法製備出的氧化鎳鈷氣凝膠,於鍛燒溫度200℃時,有最佳的OER效率。
為了提升改善氧化鎳鈷在超級電容器上的行為表現,本研究使用高導電性及高比表面積的碳氣凝膠做為骨架,製備出氧化鎳鈷/碳氣凝膠複合電極,比電容值於掃描速率25 mV/s、電解液1 M NaOH、操作電位-0.1~0.55 V vs. Ag/AgCl,可達1,696 F/g,經計算得到,能量密度及功率密度分別為67.6 Wh/kg及16 kW/kg,於下世代超級電容器之設計需求,提供了一個低成本,高效能之材料選擇。
Brinker, C. J. and G. W. Scherer, "Sol-Gel Science. “The Physics and Chemistry of Sol-Gel Processing,” Academic Press, New York (1999)
Calin, G., M. Irimia, C. Scarlat, M. Purica, F. Comanescu, F. Iacomi. “Synthesis and Characterization of Nickel Cobalt Oxide Thin Films,” Semiconductor Conference(CAS) International, 387 (2010)
Castro, E. B., S. G. Real, L. F. P. Dick, "Electrochemical characterization of porous nickel-cobalt oxide electrodes," Int. J. Hydrogen Energ., 29, 255 (2004)
De Koninck, M., P. Manseau, B. Marsan, "Preparation and characterization of Nb-doped TiO2 nanoparticles used as a conductive support for bifunctional CuCo2O4 electrocatalyst," J. Electroanal. Chem., 611, 67 (2007)
Gregory, S. R., “Structure and Bonding in Crystalline Materials,” Cambridge University Press, Cambridge (2001)
Gupta, V., S. Gupta, N. Miura., “Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor,” J. Power Sources, 195, 3757 (2010)
Hu, C. C. and C. Y. Cheng, "Ideally pseudocapacitive behavior of amorphous hydrous cobalt-nickel oxide prepared by anodic deposition," Electrochem. Solid. St., 5, A43 (2002)
Hu, C. C., Y. S. Lee, T. C. Wen, "The physicochemical/electrochemical properties of binary Ni-Co oxides," Mater. Chem. Phys., 48, 246 (1997)
Husing, N. and U. Schubert, "Aerogels airy materials: Chemistry, structure, and properties," Angewandte Chemie-International Edition, 37, 23 (1998)
Kinoshita, K., “Electrochemical Oxygen Technology”, Wiley, New York (1992)
Kistler, S. S., "Coherent expanded aerogels and jellies.," Nature, 127, 741 (1931)
Lee, H.Y. and J.B. Goodenough, “Ideal Supercapacitor Behavior of Amorphous V2O5.nH2O in Potassium Chloride (KCl) Aqueous Solution,” J. Solid State Chem., 148, 81 (1999)
Li, Y. G., P. Hasin,Y. Y. Wu, "NixCo3-xO4 Nanowire Arrays for Electrocatalytic Oxygen Evolution," Adv. Mater., 22, 1926 (2010)
Melsheimer, J. and D. Ziegler, "The Oxygen-Electrode Reaction in Acid-Solutions on Ruo2 Electrodes Prepared by the Thermal-Decomposition Method," Thin Solid Films, 163, 301 (1988)
Miller J. R. and Burke A. F., “Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications,” The Electrochem. Soc. Interface, Spring, 53 (2008)
Newman, J., "Electrochemical systems," Prentice-Hall, N.J. (1972)
Novak, D. M., B. V. Tilak, B.E. Conway, J. O’M. Bockris, R.E. White, Modern Aspects of Electrochemistry, 14, 195 (1982)
Pajonk, G. M., "Some applications of silica aerogels," Colloid Polym. Sci., 281, 637 (2003)
Palmas, S., F. Ferrara, A. Vacca, M. Mascia, A. M. Polcaro, "Behavior of cobalt oxide electrodes during oxidative processes in alkaline medium," Electrochim. Acta, 53, 400 (2007)
Pierre, A. C. and G. M. Pajonk, "Chemistry of aerogels and their applications," Chem. Rev., 102, 4243, (2002)
Pletcher, D., "Industrial electrochemistry," CHAPMAN& HALL, N.Y. (1984)
Singh, R. N., D. Mishra, Anindita, A. S. K. Sinha, A. Singh, "Novel electrocatalysts for generating oxygen from alkaline water electrolysis," Electrochem. Commun., 9, 1369 (2007)
Singh, R. N., J. P. Pandey, N. K. Singh, B. Lal, P. Chartier, J. F. Koenig, "Sol-gel derived spinel MxCo3-xO4 (M = Ni, Cu; 0 <= x <= 1) films and oxygen evolution," Electrochim. Acta, 45, 1911 (2000)
Spinolo, G., S. Ardizzone, S. Trasatti, "Surface characterization of Co3O4 electrodes prepared by the sol-gel method," J. Electroanal. Chem., 423, 49 (1997)
Svegl, F., B. Orel, M. G. Hutchins, K. Kalcher, "Structural and spectroelectrochemical investigations of sol-gel derived electrochromic spinel Co3O4 films," J. Electrochem. Soc., 143, 1532 (1996)
Swathi, T. and G. Buvaneswari, "Application of NiCo2O4 as a catalyst in the conversion of p-nitrophenol to p-aminophenol," Mater. Lett., 62, 3900 (2008)
Tewari, P. H., A. J. Hunt, K. D. Lofftus, "Ambient-Temperature Supercritical Drying of Transparent Silica Aerogels," Mater. Lett., 3, 363 (1985)
Wei, T. Y., C. H. Chen, H. C. Chien, S. Y. Lu, C. C. Hu, "A Cost-Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide-Driven Sol-Gel Process," Adv. Mater., 22, 347 (2010)
Wenger, R. S., D. N. Bennion, J. Newman, "Electrochemical Concentrating and Purifying from Dilute Copper Solutions," J. Electrochem. Soc., 120, C109 (1973)
Windisch, C. F., G. J. Exarhos, K. F. Ferris, M. H. Engelhard, D. C. Stewart, "Infrared transparent spinel films with p-type conductivity," Thin Solid Films, 398, 45 (2001)
Wu, G., N. Li, D. R. Zhou, K. Mitsuo, B. Q. Xu, "Anodically electrodeposited Co plus Ni mixed oxide electrode: preparation and electrocatalytic activity for oxygen evolution in alkaline media," J Solid State Chem., 177, 3682 (2004)
Wu, M. S., "Electrochemical capacitance from manganese oxide nanowire structure synthesized by cyclic voltammetric electrodeposition," Appl. Phys. Lett., 87 (2005)
Yeo, R. S., J. Orehotsky, W. Visscher, S. Srinivasan, "Ruthenium-Based Mixed Oxides as Electrocatalysts for Oxygen Evolution in Acid Electrolytes," J. Electrochem. Soc., 128, 1900 (1981)
Zheng, J. P., J. Huang, T. R. Jow, "The limitations of energy density for electrochemical capacitors," J. Electrochem. Soc., 144, 2026 (1997)
林佑勳,” 含氧化錳複合氣凝膠在超級電容器之應用” ,國立清華大學化工研究所碩士論文,(2010)
洪卿雲, “以脈衝-休止法製備錳氧化物奈米線應用於超級電容器,” 國立清華大學化工研究所碩士論文, 4-5 (2009)
張光輝, “循環伏安法製備含水釕銥氧化物於電化學電容器的定用,” 國立中正大學化工研究所碩士論文, 2 (2000)
盧偉珠, “高效的金屬氧化物氣凝膠觸媒,” 化工資訊, 四十八期, 58-65 (2001)
魏得育和呂世源, “最輕的固體 氣凝膠,” 科學發展, 402期, 60-65 (2006)
羅靖堯, “利用超臨界流體製備氧化鋅奈米粒子及其抗菌能力研究,” 國立成功大學化學研究所碩士論文, (2003)
http://www.batteryuniversity.com
http://www.maxwell.com
http://people.clarkson.edu/~ekatz/tafel_equation.htm