簡易檢索 / 詳目顯示

研究生: 呂為元
Lu, Wei-Yuan
論文名稱: 以單雙金屬觸媒氫化BPA型環氧樹脂
Hydrogenation of BPA type epoxy resin by using mono and bimetallic catalysts
指導教授: 談駿嵩
Tan, Chung-Sung
口試委員: 陳郁文
王竹方
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 120
中文關鍵詞: 雙金屬觸媒綠色溶劑篩選開環率控制觸媒促進劑反應路徑推論
外文關鍵詞: Bimetalliccatalyst, Green Solvent, Epoxy loss, Promoter, Mechanism
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分成三個部份進行,在第一部份中,我們探討不同溶劑在商用觸媒Rh/C中的氫化表現,特別考慮氫鍵效應對環氧樹脂氫化之影響,並歸納溶劑篩選原則(即溶劑參數高α低β的規則),依此原則配搭不同比例的混摻溶劑(如EA混摻水做為溶劑),進而找出適當且符合綠色化學原則之反應溶劑;本部份也就該原則背後之物理化學意義做一闡述。在第二部份中,我們嘗試以商用觸媒Rh/C做為目標,合成活性更佳的觸媒,利用微波輔助多元醇還原法(Microwave Assisted Polyol Method)製備觸媒,比較不同觸媒擔體與活性金屬。其中以Rh5/VulcanXC72以及Rh2.5Pt2.5/VulcanXC72為活性最佳的單雙金屬觸媒,且對於環氧樹脂氫化的活性皆較商用觸媒Rh/C來得佳,其中雙金屬觸媒亦有較單金屬觸媒高的活性。為了瞭解這些觸媒的活性來源,我們嘗試進行BET、H2-TPR、XPS以及HRTEM等觸媒分析手段,觀測到RhOx的存在,並透過一般觸媒含浸法以及化學流體沉積法(Chemical Fluid Deposition, CFD)合成不具有RhOx且不同粒徑的觸媒進行比較,當觸媒中含有RhOx之成分,對活性有大幅度的提升。依上述觸媒對不同分子量的BPA型環氧樹脂進行氫化(BE186、BE503以及BE507),搭配第一部份所篩選的溶劑,其結果與第一部份所推測的篩選原則一般(混摻溶劑效果最佳)。在第二部份中,自行合成的觸媒雖展現高活性(@40 oC, 1000 psi),卻會對環氧基團造成過多的開環(BE186中,開環率 > 6 %;BE503以及BE507 > 20 %)。因此在第三部份中,我們將目標設定為降低氫化環氧樹脂開環率。根據文獻以及實驗數據,推測其反應路徑,並推論環氧基團開環原因。我們提出兩個方法能有效地降低觸媒開環率:1. 不使用混摻溶劑;2. 降低反應物與觸媒比例並提升溫度。雖然不使用混摻溶劑能降低開環率,但由於觸媒活性降低,會造成反應時間的延長,因此若保留混摻溶劑但降低觸媒使用量且提升溫度(40-60 oC),我們有效地降低開環率並使反應時間不致過長,且雖然反應時間變長(2h-3.5h),產量也隨之提高了2倍以上。值得注意的是,當同時使用上述兩個方法時,能將BE186的開環率降之幾乎為0。


    There are three parts in this research, first of all, we discuss the solvent effect in hydrogenation of BPA type epoxy resin via commercial Rh/C (Sigma Aldrich), especially the effect of hydrogen bonding for hydrogenation of benzene ring. We then classify the selection rules of the solvent for hydrogenation of BPA type epoxy resin, and considering the physical chemistry behind the guide line (that is, high α and low β). Thereby, we follow this solvent selection rule to make different solvent mixture, and try out to find a moderate solvent, which performs the best activity and fits green chemistry principles, too. In the second section, we attempt to create a catalyst that perform better activity by considering the commercial catalyst Rh/C. To achieve this goal, microwave assisted polyol method has been applied. Among all of them, Rh5/VulcanXC72 and Rh2.5Pt2.5/VulcanXC72 act as the best catalyst within monometallic and bimetallic catalysts, which both perform better activity than commercial catalyst Rh/C, and it should be noticed that bimetallic catalyst (Rh2.5Pt2.5/VulcanXC72) possess better activity than monometallic catalyst (Rh5/VulcanXC72). To realize the reason of this fact, different catalyst characterization has been conducted, including H2-TPR, BET, XPS, and HRTEM et al. Characterization reveals that the presence of RhOx which is hypothesized to be an effective promoter in this system, to confirm this hypothesis, catalyst without RhOx and different particle size has been prepared by conventional impregnation and chemical fluid deposition method. The results show that for catalysts that present RhOx, the hydrogenation activity is much higher than that in absence of RhOx. Therefore, these catalysts, which is present RhOx, is used to carry out different molecular weight BPA type epoxy resins (BE186, BE503, BE507) accompanied with the solvent selected in first section, and it is found out that the reaction results are the same as that concluded in first section (i.e. solvent mixture possess the best activity in hydrogenation of BPA type epoxy resin). Though, high activity of hydrogenation can be achieved by synthesized catalysts, severer epoxy group loss has been found out (BE186, epoxy loss > 6%, BE503 and BE507, epoxy loss > 20%). Therefore, in the last section, we emphasize on how to lower the epoxy loss during hydrogenation process. In this section, the hydrogenation pathway is proposed according to the literature and reaction data in order to realize the mechanism of epoxy ring opening. Two methods have been considered: 1. Solvent without water addition (i.e. non solvent mixture). 2. Reduce the amount of catalyst and raise the reaction temperature. Although, reaction conducted in the solvent without using solvent mixture we proposed can effectively reduce the epoxy group loss, but the reaction rate is also reduced, thus, when we retain the solvent mixture but reduce the amount of catalyst (method 2), the epoxy group loss can be controlled under reasonable value (BE186, epoxy group loss <4 %). And when the abovementioned method is applied (method 1 and method 2), the epoxy loss of BE186 can be declined to almost zero value (no detectable).

    摘要 1 Abstract 3 圖目錄 7 表目錄 10 第二章、非均相觸媒之氫化反應應用於環氧樹脂氫化 14 2-1前言與研究目的 14 2-2 文獻回顧 15 2-2-1 環氧樹脂氫化文獻 15 第三章、實驗方法 22 3-1實驗藥品與儀器 22 3-2實驗裝置與步驟 25 3-2-2半批式環氧樹脂氫化反應 25 3-2-2 半批式環氧樹脂氫化反應 25 3-2-3以微波輔助多元醇法合成觸媒 (Microwave assisted polyol method) 26 3-3檢測儀器 27 3-3-1穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 27 3-3-2能量分散光譜儀(Energy Dispersive Spectrometer, EDS) 27 3-3-4核磁共振波譜儀(Nuclear Magnetic Resonance Spectrometer, NMR) 28 3-3-5 X-ray粉末繞射儀(X-ray Diffraction Spectrometer, XRD) 29 3-3-6 X-ray光電子能譜儀(X-ray Photoelectron Spectroscope, XPS) 29 第四章、實驗結果與討論 31 4-1 氫化環氧樹樹脂研究參數選擇 31 4-1-1 研究流程圖 31 4-1-2 氫化環氧樹脂初步實驗(Preliminary Test) 32 4-1-3 環氧樹脂氫化溶劑篩選 33 4-2 觸媒效應對環氧樹脂氫化系統影響 45 4-2-1 由研究流程圖考量觸媒設計因素 45 4-2-2 商用觸媒Rh/C分析暨觸媒設計 45 4-2-3 以商用觸媒做為模板進行觸媒設計 54 4-2-4 微波多元醇還原法製備觸媒表徵暨BE186氫化反應測試 58 4-2-5 以單金屬觸媒Rh5/VulcanXC72以及雙金屬觸媒5 wt% Rh-Pt/VulcanXC72進行高分子環氧樹脂BE186、BE503以及BE507氫化 89 4-2-6 氫化環氧樹脂開環率測定 98 4-3 氫化環氧樹脂開環率降低研究 100 4-3-1 氫化環氧樹脂開環率降低可能方式 100 第五章、結論與建議 113 5-1 氫化環氧樹脂溶劑篩選 113 5-2 半批式反應進行環氧樹脂氫化反應 113 5-3 氫化環氧樹脂開環率降低研究 114 第六章、附錄 116 第七章、參考文獻 118 圖目錄 圖1.1 台灣石化產業高值化前20項技術[1] 13 圖1.2 現階段對於材料黃變解決方案[1] 13 圖2.1 雙酚A型環氧樹脂 15 圖2.9 常見LED封裝用環氧樹之組成物 16 圖2.10 LED封裝製程 16 圖2.11 環氧樹指可能劣化機制 17 圖3.1 BE186 (DGEBA) 22 圖3.2 BE503以及BE507 (不同聚合度) 22 圖3-3批次式奈米金屬觸媒製備裝置 25 圖4.1 環氧樹脂氫化研究流程圖 31 圖4.1 BE186 (DGEBA) 32 圖4.2 以水做為分散劑(不溶)或混摻溶劑對BE186氫化之影響 37 圖4.4 不同單一溶劑(或分散劑)與混摻溶劑於BE186中的氫化效果 44 圖4.5 商用觸媒Rh/C氮氣吸脫附等溫線(BET) 49 圖4.6 商用觸媒Rh/C TEM影像以及表面粒徑分析 50 圖4.7 商用觸媒Rh/C 之Wide Angle XRD (2 theta:20-80 o) 51 圖4.8 商用觸媒Rh/C H2-TPR 52 圖4.9 商用觸媒Rh/C XPS Rh 3d (分峰擬合) 52 圖4.10 商用觸媒Rh/C 觸媒示意圖 53 圖4.11 Rh奈米粒子晶面與粒徑間的關係[22] 53 圖4.12 微波輔助多元醇還原法可能機制 56 圖4.13 乙醇酸與乙醇酸鹽在不同pH值下之濃度分佈[26] 56 圖4.14 不同溶劑之正切損失 57 圖4.15 微波加熱與油浴加熱溫度分佈比較 57 圖4.16 不同觸媒在不同溶劑中對BE186之影響 64 圖4.17 RhOx存在對BE186 氫化率影響@ 40 oC, 1000 psi 65 圖4.18 商用觸媒與不同擔體之氮氣等溫吸脫附線 66 圖4.19 不同觸媒之H2-TPR 68 圖4.20 Rh5/VulcanXC72 XPS分峰擬合(Rh 3d) 70 圖4.21 Rh5/VulcanXC72 XPS (C 2s) 71 圖4.22 Rh5/AC XPS分峰擬合(Rh 3d) 72 圖4.23 Rh5/Mesoporous Carbon (10 nm) XPS 分峰擬合(Rh 3d) 73 圖4.24 Rh5/VulcanXC72-imp XPS分峰擬合(Rh 3d) 74 圖4.25 Rh5/C (Commercial) XPS分峰擬合(Rh 3d) 75 圖4.26 Rh2.5Pt2.5/VulcanXC72 XPS分峰擬合(Rh 3d)/(Pt 4f) 76 圖4.27 Rh3.75Pt1.25/VulcanXC72 XPS分峰擬合(Rh 3d)/(Pt 4f) 77 圖4.28 不同觸媒之Wide angle XRD (2 theta:20-80 o) 79 圖4.29 不同觸媒間的TEM影像 82 圖4.30 Rh5/VulcanXC72-polyol particle size distribution 83 圖4.31 Rh5/VulcanXC72-impregnation particle size distribution 84 圖4.33 Rh2.5Pt2.5/VulcanXC72-polyol particle size distribution 86 圖4.34 HRTEM影像Rh5/VulcanXC72-polyol/ Rh2.5Pt2.5/VulcanXC72-polyol 87 圖4.35 TEM-EDS(證明雙金屬觸媒的合金結構Rh2.5Pt2.5/VulcanXC72- alloy formation) 88 圖4.36微波多元醇還原法示意圖 88 圖3.1 BE186 (DGEBA) 90 圖3.2 BE503以及BE507 (不同聚合度) 90 圖4.38 不同觸媒在不同溶劑中對BE503氫化反應性 95 圖4.38 不同觸媒在Solvent G中對BE507之氫化結果 97 圖4.39 氫化BE186(DGEBA)可能產物 105 圖4.40 BE186氫化可能路徑 106 圖4.41 氫化環氧樹脂研究考慮因素暨解決方案 115

    [1] 財團法人工業技術研究院, 經濟部工業局101 年度專案計畫期末執行成果報告, (2012).
    [2] C.H. Yen, H.W. Lin, C.-S. Tan, Hydrogenation of bisphenol A – Using a mesoporous silica based nano ruthenium catalyst Ru/MCM-41 and water as the solvent, Catalysis Today, 174 (2011) 121-126.
    [3] W. Yu, Y.-P. Hsu, C.-S. Tan, Synthesis of rhodium-platinum bimetallic catalysts supported on SBA-15 by chemical fluid deposition for the hydrogenation of terephthalic acid in water, Applied Catalysis B: Environmental, 196 (2016) 185-192.
    [4] D.-H. Phan-Vu, C.-S. Tan, Synthesis of phthalate-free plasticizers by hydrogenation in water using RhNi bimetallic catalyst on aluminated SBA-15, RSC Advances, 7 (2017) 18178-18188.
    [5] T. Wettling, L. Schuster, J. Henkelmann, Selective hydrogenation of aromatic groups in the presence of epoxy groups, in, Google Patents, 1997.
    [6] Y. Hara, H. Takahashi, Process for producing compound having epoxy group, in, Google Patents, 2000.
    [7] F. van Laar, M. Becker, Heterogeneous Ruthenium Catalyst and Method For Hydrogenating a Carboxylic Aromatic Group, in Particular For Producing Core Hydrogenated Bisglycidyl Ether Bisphenols A and F, in, Google Patents, 2008.
    [8] D.R. Fung, J.J. Chuang, C.R. Tsai, Hydrogenation process for improving yield of hydrogenated bisphenol-a-based epoxy resin, in, Google Patents, 2012.
    [9] K. Murai, M. Nishi, M. Honda, Alicylic epoxy compounds and their preparation process, alicylic epoxy resin composition, and encapsulant for light-emitting diode, in, Google Patents, 2003.
    [10] D.C. Molzahn, M.L. Tulchinsky, Catalyst regeneration process, in, Google Patents, 2017.
    [11] M.L. Tulchinsky, W.J. Kruper Jr, T.-c. Kuo, D.C. Molzahn, M.F. Sonnenschein, Epoxy resin compositions, in, Google Patents, 2017.
    [12] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics Division, Perkin-Elmer Corporation, 1992.
    [13] H. Takagi, T. Isoda, K. Kusakabe, S. Morooka, Effects of Solvents on the Hydrogenation of Mono-Aromatic Compounds Using Noble-Metal Catalysts, Energy & Fuels, 13 (1999) 1191-1196.
    [14] H. Yoshida, Y. Onodera, S.-i. Fujita, H. Kawamori, M. Arai, Solvent effects in heterogeneous selective hydrogenation of acetophenone: differences between Rh/C and Rh/Al2O3 catalysts and the superiority of water as a functional solvent, Green Chemistry, 17 (2015) 1877-1883.
    [15] F. Li, B. Cao, W. Zhu, H. Song, K. Wang, C. Li, Hydrogenation of Phenol over Pt/CNTs: The Effects of Pt Loading and Reaction Solvents, 2017.
    [16] I. McManus, H. Daly, J.M. Thompson, E. Connor, C. Hardacre, S.K. Wilkinson, N. Sedaie Bonab, J. ten Dam, M.J.H. Simmons, E.H. Stitt, C. D’Agostino, J. McGregor, L.F. Gladden, J.J. Delgado, Effect of solvent on the hydrogenation of 4-phenyl-2-butanone over Pt based catalysts, Journal of Catalysis, 330 (2015) 344-353.
    [17] J.A. Anderson, A. Athawale, F.E. Imrie, F.M. Mkenna, A. Mcue, D. Molyneux, K. Power, M. Shand, R.P.K. Wells, Aqueous phase hydrogenation of substituted phenyls over carbon nanofibre and activated carbon supported Pd, Journal of Catalysis, 270 (2010) 9-15.
    [18] M. Levitt, M.F. Perutz, Aromatic rings act as hydrogen bond acceptors, Journal of Molecular Biology, 201 (1988) 751-754.
    [19] P.G. Jessop, D.A. Jessop, D. Fu, L. Phan, Solvatochromic parameters for solvents of interest in green chemistry, Green Chemistry, 14 (2012) 1245-1259.
    [20] T. Welton, Solvents and sustainable chemistry, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 471 (2015).
    [21] Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, International union of pure and applied chemistry, 57 17.
    [22] Y. Yuan, N. Yan, P.J. Dyson, Advances in the Rational Design of Rhodium Nanoparticle Catalysts: Control via Manipulation of the Nanoparticle Core and Stabilizer, ACS Catalysis, 2 (2012) 1057-1069.
    [23] H.-B. Pan, C.M. Wai, One-Step Synthesis of Size-Tunable Rhodium Nanoparticles on Carbon Nanotubes: A Study of Particle Size Effect on Hydrogenation of Xylene, The Journal of Physical Chemistry C, 114 (2010) 11364-11369.
    [24] Y. Ren, G. Fan, C. Wang, Aqueous hydrodechlorination of 4-chlorophenol over an Rh/reduced graphene oxide synthesized by a facile one-pot solvothermal process under mild conditions, Journal of Hazardous Materials, 274 (2014) 32-40.
    [25] M. Piumetti, M. Hussain, D. Fino, N. Russo, Mesoporous silica supported Rh catalysts for high concentration N2O decomposition, Applied Catalysis B: Environmental, 165 (2015) 158-168.
    [26] C. Bock, C. Paquet, M. Couillard, G.A. Botton, B.R. MacDougall, Size-Selected Synthesis of PtRu Nano-Catalysts:  Reaction and Size Control Mechanism, Journal of the American Chemical Society, 126 (2004) 8028-8037.
    [27] J. Luo, Y. Liu, H. Wei, B. Wang, K.-H. Wu, B. Zhang, D.S. Su, A green and economical vapor-assisted ozone treatment process for surface functionalization of carbon nanotubes, Green Chemistry, 19 (2017) 1052-1062.
    [28] Y. Hara, H. Inagaki, Selective Hydrogenation of Aromatic Compounds Containing Epoxy Group over Rh/Graphite, Chemistry Letters, 2002 (2002) 1116-1117.
    [29] 脂环式环氧化合物、其制造方法和组成物及发光二极管用密封材料, in, Google Patents, 2003.
    [30] K. Murai, Y. Oonuma, Alicyclic epoxy resins, their preparation process, their compositions, epoxy resin cured product, and uses of alicyclic epoxy resin compositions, in, Google Patents, 2006.
    [31] P. Castaño, D. van Herk, M.T. Kreutzer, J.A. Moulijn, M. Makkee, Kinetic and deactivation modelling of biphenyl liquid-phase hydrogenation over bimetallic Pt–Pd catalyst, Applied Catalysis B: Environmental, 88 (2009) 213-223.
    [32] W.J.K.J. Michael L. Tulchinsky, Tzu-chi Kuo, David C. Molzahn, Mark F. Sonnenschein Epoxy resin compositions, in: US20170073458A1, DOW Global Technologies L LC,, 2017.
    [33] D. Garcia-Pintos, J. Voss, A.D. Jensen, F. Studt, Hydrodeoxygenation of Phenol to Benzene and Cyclohexane on Rh(111) and Rh(211) Surfaces: Insights from Density Functional Theory, The Journal of Physical Chemistry C, 120 (2016) 18529-18537.

    QR CODE