研究生: |
鄭欽獻 Chin-Hsien Cheng |
---|---|
論文名稱: |
燃料電池電解質奈米尺度離子動態輸送模擬 Ionic Dynamics of Nano-Scale Transport Phenomena inside Fuel Cell Electrolytes |
指導教授: |
洪哲文
Che-Wun Hong |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 109 |
中文關鍵詞: | 燃料電池 、奈米尺度 、輸送現象 、分子動力學 、多尺度模擬 |
外文關鍵詞: | Fuel Cell, Nano-scale, Transport Phenomenon, Molecular Dynamics, Multi-scale Modelling |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文使用分子動力學模擬對燃料電池電解質內之離子動態輸送現象進行研究分析。本論文研究之燃料電池種類主要是固態氧化物燃料電池(SOFC)以及質子交換模式燃料電池(PEMFC)。質子交換模式燃料電池電解質所選用之材料為Nafion,此材料為一高分子材料,至於固態氧化物燃料電池之電解質則選用了Yttria stabilized zirconia (YSZ) and yttria doped ceria (YDC)這兩種材料。
氧離子在固態氧化物燃料電池電解質內部之傳遞現象為一非連續之跳躍行為,不同的Y2O3添加濃度以及不同溫度對氧離子傳導率的影響在本論文中也有深入的探討。模擬結果顯示Y2O3添加濃度對氧離子的傳導來說有一最佳的濃度(YSZ: 8.0 mol%以及YDC: 10.2 mol%)且溫度越高氧離子的傳導率越好。
同時本論文也利用了分子動力學研究質子在不同的電解質(Nafion)水含量以及不同溫度下所展現的不同動態行為,這四個不同的水含量分別為3、 6.125、9以及 15.375 H2O/SO3-),三個不同的操作溫度分別為333K、343K和353K。研究結果顯示碳原子以及氟原子表現出了疏水的特性,而磺酸根(SO3-)的部分則表現出親水性的特性。質子在電解質內的傳遞效果隨著水含量以及溫度的增加而增加,因為磺酸根和水分子所形成的親水性傳遞區域會隨著水含量和溫度增加而變大。由模擬可以算出在不同操作條件下的質子擴散係數,所得到的值與實驗值的趨勢相當吻合。
Nano-scale analyses were performed to investigate the ion transport phenomena inside fuel cell electrolytes. Molecular dynamics (MD) techniques were employed to carry out the ionic dynamics simulation. Example fuel cells involved in this thesis are solid oxide fuel cells (SOFCs) and proton exchange membrane fuel cells (PEMFCs). The chosen electrolytes for the SOFC are the traditional yttria stabilized zirconia (YSZ) and the modern yttria doped ceria (YDC), while the Nafion® polymer is for the PEMFC.
The transport mechanism of oxygen ions inside the SOFC electrolyte is proved to be through non-continuous hopping between oxygen vacancies. Influences of Y2O3 concentrations and operation temperatures on the ionic conductivity were studied. Simulation results show that there exists an optimal concentration (8.0 mol% for YSZ and 10.2 mol% for YDC) for the nano-scale transport. Also higher operation temperature promotes the oxygen ion move-ability that increases the ionic conductivity.
An investigation of proton dynamics at various hydration levels and thermal conditions inside the Nafion membrane has been carried out also based on the molecular dynamics technique. Semi-empirical quantum mechanics calculations were performed to optimize the complex molecular structure of the polymer. The atomistic simulation was conducted at four different hydration levels (3, 6.125, 9 and 15.375 H2O/SO3-) and three different thermal conditions (333 K, 343 K and 353 K). Simulation results show that different ionic segregations toward the hydrophobic (near fluorocarbon) and hydrophilic (sulfonate acid groups) regions. It is also found that higher temperature enhances the size of the hydrophilic phase. The diffusion coefficients of protons (or hydroniums) at various conditions have been evaluated and the comparison with experimental data shows good agreements.
References
1. Williams, K. R., 1966, An Introduction To Fuel Cells, Elsevier Publishing Company, Chap 1.
2. Annual Energy Review 2003, Energy Information Adiministration, Sep.2004.
3. USDOE, Fuel Cell Handbook7th edition, 2004.
4. Mouritsen, O.G., Computer Studies of Phase Transitions and Critical Phenomena, Springer-Verlag, Berlin, 1984.
5. Shimojo, F., Okabe, T., Tachibana, F., Kobayashi, M., and Okazaki, H., 1992, “Molecular dynamics studies of yttria stabilized zirconia. I. structure and oxygen diffusion,” J. Phys. Soc. Japan, Vol.61 (8), pp. 2848-2857.
6. Shimojo, F., and Okabe, T, 1992, “Molecular dynamics studies of yttria stabilized zirconia II. microscopic mechanism of oxygen diffusion,” J. Phys. Soc. Japan , Vol.61 (11), pp. 4106-4118.
7. Fisher, C., A. J., and Matsubara, H., 1998, “Oxide ion diffusion along grain boundaries in zirconia: a molecular dynamics study,” Solid State Ionics, Vol.113-115, pp. 311-318.
8. Fisher, C. A. J., and Matsubara, H., 1999, “Molecular dynamics investigations of grain boundary phenomena in cubic zriconia,” Comput. Mater. Sci., Vol.14 (1-4), pp. 177-184.
9. Tojo, T., and Kawaji, H., Atake, T., 1999, “Molecular dynamics study on lattice vibration and heat capacity of yttria-stabilized zirconia,” Solid State Ionics, Vol.118 (3-4), pp. 349-353.
10. Li, X., and Hafskjold, B., 1995 “Molecular Dynamics Simulation of Yttria- Stabilized Zirconia”, J. Phys.: Condensed Matter, Vol.7 (7), p.p.1255-1271
11. Brinkman, H., W., Briels, W., J., and Verweij, H., 1995, “Molecular Dynamics Simulation of Yttria-Stabilized Zirconia,” Chem. Phys. Lett., Vol.247 (4-6), p.p. 386-390.
12. Perumal, T., P., Sridhar, V., Murthy, K., P., N., Easwarakumar, K., S., and Ramasamy, S., 2002, “Molecular Dynamics Simulation of Oxygen Ion Diffusion in Yttria-Stabilized Zirconia,” Physica A, Vol.309 (1-2), p.p.35-44.
13. Yamamura, Y., Kawasaki, S., and Sakai, H., 1999, “Molecular Dynamics Analysis of Ionic Conduction Mechanism in Yttria-Stabilized Zirconia,” Solid State Ionics, Vol.126 (1-2), p.p.181-189.
14. Sawaguchi, N., and Ogawa, H., 2000, “Simulated diffusion of oxide ions in YO1.5-ZrO2 at high temperature,” Solid State Ionics, Vol.128 (1-4), p.p. 183-189.
15. Herle, J. V., Horita, T., Kawada, T., Sakai, N., Yokokawa, H., and Dokiya, M., 1996, “Low Temperature Fabrication of (Y,Gd,Sm)-doped ceria electrolyte,” Solid State Ionics, Vol.86-88 (2), p.p. 1255-1258.
16. Herle, J. V., Horita, T., Kawada, T., Sakai, N., Yokokawa, H., and Dokiya, M., 1997, “Fabrication and Sintering of Fine Yttria-Doped Ceria Powder,” J. Am. Ceram. Soc., Vol.80 (4), p.p. 933-940
17. Mogensen, M., Sammes, N. M., and Tompsett, G. A., 2000, “Physical, Chemical and Electrochemical Properties of Pure and Doped Ceria,” Solid State Ionics, Vol.129 (1-4), p.p. 63-94.
18. Hong, S. J., and Virkar, A. V., 1995, “Lattice Parameters and Densities of Rare-Earth Oxide Doped Ceria Electrolytes,” J. Am Ceram. Soc., Vol.78 (2), p.p. 433-39.
19. Rey, J. F. Q., and Muccillo, E. N. S., 2004, “Lattice Parameters of Yttria-Doped Ceria solid electrolytes,” J. Eur. Ceram. Soc., Vol.24 (6), p.p. 1287-1290.
20. Chavan, S. V., mathews, M. D., and Tyagi, A. K., 2004, “Phase Relations and Thermal Expansion Studies in the Ceria-Yttria System,” J. Am. Ceram. Soc., Vol.87 (10), p.p. 1977-1980.
21. Wang, D. Y., Park, D. S., Griffith, J., and Nowick, A. S., 1981, “Oxygen-Ion Conductivity and Defect Interactions in Yttria-Doped Ceria,” Solid State Ionics, Vol.2 (2), p.p. 95-105.
22. Minervini, L., Zacate, M. O., and Grimes, R. W., 1999, “Defect Cluster Formation in M2O3-Doped CeO2,” Solid State Ionics, Vol.116 (3-4), p.p. 339-349.
23. Cheng, C. H., Chang, Y. W., and Hong, C. W., 2005, “Multiscale Parametric Studies on the Transport Phenomenon of a Solid Oxide Fuel Cell,”ASME J. Fuel Cell Science and Technology, Vol.2 (4), p.p. 219-25.
24. Agmon, N., 1995, “The Grotthuss Mechanism,” Chem. Phys. Lett., Vol.13 (5-6), p.p. 456-462.
25. McLean, R. S., Doyle, M., and Sauer, B. B., 2000, “High-Resolution Imaging of Ionic Domains and Crystal Morphology in Ionomers Using AFM Techniques,” Macromolecules, Vol.33 (17), p.p. 6541-6550.
26. Affoune, A. M., Yamada, A., and Umeda, M., 2004, “Surface Observation of Solvent-Impregnated Nafion Membrane with Atomistic Force Microscopy,” Langmuir, Vol.20 (17), p.p. 6965-6968.
27. James. P. J., Elliott, J. A, and T. J. McMaster, Newton, J. M., Elliot, A. M. S., Hanna, S. and Miles, M. J., 2000, “Hydration of Nafion Studied by AFM and X-ray Scattering,” J. Membrane Sci., Vol.35 (20), p.p. 5111-5119.
28. Boyle, N. G., McBrierty, V. J., and Eisenberg, A., 1983, “NMR Investigation of Molecular Motion in Nafion Membranes,” Macromolecules, Vol.16 (1), p.p. 80-84.
29. Boyle, N. G., McBrierty, V. J., and Douglass, D. C., 1983, “A Study of the Behavior of Water in Nafion Membranes,” Macromolecules, Vol.16 (1), p.p. 75-80.
30. Schlick, S., Gebel, G., Pineri, M., and Volino, F., 1991, “F NMR Spectroscopy of Acid Nafion Membranes and Solutions,” Macromolecules, Vol.24 (12), p.p. 3517-3521.
31. Fujimura, M., Hashimoto, T., and Kawai, H., 1981, “Small-Angle X-ray Scattering Study of Perfluorinated Ionomer Membranes. 1. Origin of Two Scattering Maxima,” Macromolecules, Vol.14 (5), p.p. 1309-1315.
32. Gierke, T. D., Munn, C. E., Wilson, F. C., and du Pont de, E. I., 1981, “The Morphology in Nafion Perfluorinated Membrane Products, as Determined by Wide-and Small Angle X-ray Studies,” J. Polym. Sci. Pol. Phys., Vol.19 (11), p.p. 1687-1704.
33. Lowry, S. R., and Mauritz, A., 1980, “An Investigation of Ionic Hydration Effects in Perfluorosulfonate Ionomers by Fourier Transform Infrared Spectroscopy,” J. Am. Chem. Soc., Vol.102 (14), p.p. 4665-4667.
34. Falk, M., 1980, “An infrared Study of Water in Perfluorosulfonate (Nafion) membranes,” Can. J. Chem., Vol.58 (14), p.p. 1495-1501.
35. Hsu, W. Y., and Gierke, T. D., 1983, “Ion Transport and Clustering in Nafion Perfluorinated Membranes,” J. Mem. Sci., Vol.13, p.p. 307-326.
36. Ennari, J., Elomma, M., and Sundholm, F., 1999, “Modelling a Polyelectrolyte System in Water to Estimate the Ion-Conductivity,” Polymer, Vol.40 (18), p.p. 5035-5041
37. Ennari, J., Neelov, I., and Sundholm, F., 2000, “Molecular Dynamics Simulation of the PEO Sulfonic Acid Anion in Water” Comput. Theor. Polym. Sci., Vol.10 (5), p.p. 5035-5041
38. Ennari, J., Neelov, and Sundholm, F., 2000, “Molecular Dynamics Simulation of the Structure of PEO Based Solid Polymer Electrolytes,” Polymer, Vol.41 (11), p.p. 4057-4063.
39. Ennari, J., Elomaa, M., Neelov, I., and Sundholm, F., 2000, “Modeling of water-free and water containing solid polyelectrolytes,” Polymer, Vol.41 (3), p.p. 985-990.
40. Ennari, J., Neelov, I., and Sundholm, F., 2001, “Estimation of the ion conductivity of a PEO-based polyelectrolyte system by molecular modeling”, Polymer, vol.42 (19), p.p.8043-8050.
41. Spohr, E., 2004, “Molecular Dynamics Simulations of Proton Transfer in a Model Nafion Pore,” Molecular Simulation, Vol.30 (2-3), p.p. 107-115.
42. Paddison, S., J., and Zawodzinski Jr., T., A., 1998, “Molecular modeling of the pendant chain in Nafion®”, Solid State Ionics, Vol.113-115 (), p.p. 333-340
43. Elliott, J., A., Hanna, S., Elliot, A. M. S., and Cooley, G. E., 1999, “Atomistic simulation and molecular dynamics of model systems for perfluorinated ionomer membranes,” Phys. Chem. Chem. Phys., Vol.1 (20), pp. 4855-4863
44. Jinnouchi, R., and Okazaki, K., 2003, “Molecular dynamics study of transport phenomena in perfluorosulfonate ionomer membranes for polymer electrolyte fuel cells,” J. Electrochem. Soc., Vol.150 (1) E66-E73.
45. Spohr, E., Commer, P., and Kornyshev, A. A., 2002, “Enhancing Proton Mobility in Polymer Electrolyte Membranes: Lessons from Molecular Dynamics Simulations,” J. Phys. Chem. B, Vol.106 (41), p.p. 10560-10569.
46. Petersen, M. K., Wang, F., Blake, N. P., Metiu, H., and Voth, G. A., 2005, “Excess Proton Solvation and Delocalization in a Hydrophilic Pocket of the Proton Conducting Polymer Membrane Nafion,” J. Phys. Chem. B Lett., Vol.109 (9), p.p. 3727-3730.
47. Cheng, C. H., and Hong, C. W., 2006, “Investigation of Atomistic Scale Transport Phenomena of the PEMFC,” ASME J. Fuel Cell Science and Technology, in print (assigned to issue: 2007, Nov)
48. Urata, S., Irisawa, J., Takada, A., Shinoda, W., Tsuzuki, S., and Mikami, M., 2005, “Molecular Dynamics Simulation of Swollen Membrane of Perfluorinated Ionomer,” J. Phys. Chem. B, Vol.109 (9), p.p. 4269-4278.
49. Vishnyakov, A., and Neimark, A. V., 2001, “Molecular Dynamics Simulation of Microstructure and Molecular Mobilities in Swollen Nafion Membranes,” J. Phys. Chem. B, Vol.105 (39), 9586-9594.
50. Blake, N. P., Petersen, M. K., Voth, G. A. and Metiu, H., “Structure of Hydrated Na-Nafion Polymer Membranes,” J. Phys. Chem. B, Vol.109 (51), p.p. 24244-24253.
51. Vishnyakov, A., and Neimark, A. V., 2000, “Molecular Simulation of Nafion Membrane Solvation in Water and Methanol,” J. Phys. Chem. B, Vol.104 (18), p.p. 4471-4478.
52. Vishnyakov, A., and Neimark, A. V., 2001, “Molecular Dynamics Simulation of Nafion Oligomer Solvation in Equimolar Methanol-Water Mixture,” J. Phys. Chem. B, Vol.105 (32), p.p. 7830-7834.
53. Jang, S. S., Molinero, V., Cagin, T., and Goddard, W. A., 2004, “Nanophase-Segregation and Transport in Nafion 117 from Molecular Dynamics Simulations: Effect of Monomeric Sequence,” J. Phys. Chem. B, Vol.108 (10), p.p. 3149-3157.
54. Paddison, S. J., and Elliott, J. A., 2005, “Molecular Modeling of the Short-Side-Chain Perfluorosufonic Acid Membrane,” J. Phys. Chem. A, Vol.109 (33), p.p. 7583-7593.
55. Haile, J. M., 1997, Molecular Dynamics Simulation: Elementary Methods, Wiley Press, New York.
56. Lewis, G. V., and Catlow, C. R. A.,1985, “Potential Models for Ionic Oxides,” J. Phys. C: Solid State Phys., Vol.18 (6) p.p. 1149-1161.
57. Allen, M., P., and Tildesley, D., J., 1987, Computer Simulation of Liquids, Oxford Science Publication.
58. Gear C. W., 1971, Numerical Initial Value Problems in Ordinary Differential Equations, Chap.9, Englewood Cliffs, NJ.
59. Verlet, L., 1967, “Computer ‘experiments’ on classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev., Vol.159 (1) p.p. 98-103.
60. Ikeda, S., Sakurai, O., Uematsu, K., Mizutani, N., and Kato, M., 1985, “Electrical Conductivity of Yttria-Stabilized Zirconia Single Crystals,” J. of Mater. Sci., Vol.20 (12), p.p. 4593-4600.
61. Herle, J. V., Horita, T., Kawada, T., Sakai, N., Yokokawa, H., and Dokiya, M., 1996, “Sintering Behaviour and Ionic Conductivity of Yttria-Doped Ceria,” J. Eur. Ceram. Soc., Vol.96 (9), p.p. 961-973.
62. Hypercube, HyperChem reference manual, 2002; chap. 8, p296.
63. Jorgensen, W. L., Chandrasekhar, J., and Madura, J. D., 1983, “Comparison of Simple Potential Functions for Simulating Liquid Water,” J. Chem. Phys., Vol.79 (2), p.p. 926-935.
64. Mayo, S. L., Olfason, B., D., and Goddard, W. A., 1990, “DREIDING: A Generic Force Field for Molecular Simulations,” J. Phys. Chem., Vol.94 (26), p.p. 8897-8909.
65. Smith, W., Leslie, M., and Forester, T., R., The dlpoly_2 user manual, CCLRC, Daresbury Laboratory, 2003.
66. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W.; DiNola, A; Haak, J. R. 1984, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys., Vol.81, 3684-3690.
67. Ryckaert, J. P., Ciccotti, G., and Berendsen, H., J., C., 1977, “Numerical Integration of the Cartesian Equations of Motion of a System with Constrains: Molecular Dynamics of n-Alkanes,” J. Comput. Phys., Vol.23, p.p. 327-341.
68. Morris, D. R., and Sun, X., 1993, “Water-Sorption and Transport Properties of Nafion 117 H,” J. Appl. Polym. Sci., Vol.50, p.p. 1445-1452.
69. Zawodzinski, T. A., Neeman, M., Sillerud, L. O., and Gottesfeld, S., 1991, “Determination of Water Diffusion Coefficients in Perfluorosulfonate Ionomeric Membranes,” J. Phys. Chem., Vol.95, p.p. 6040-6044.
70. Vishnyakov, A., and Neimark, A., V., 2000, “Molecular Simulation Study of Nafion Membrane Salvation in Water and Methanol”, J. Phys. Chem. B, Vol.104 (18), p.p. 4471-4478
71. Vishnyakov, A., and Neimark, A., V., 2000, “Molecular Dynamics Simulation of Nafion Oligomer Solvation in Equimolar Methanol-Water Mixture”, J. Phys. Chem. B, Vol.105 (32), p.p. 7830-7834.
72. Verlet, L., 1961, “Computer ‘experiment’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. Vol.159 (1), p.p. 98-103.
73. Recknagle, K.P., Williford, R. E., Chick, L. A., Rector, D. R., and Khaleel, M. A., 2003, “Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks,” J. Power Sources, Vol. 113 (1), pp. 109-114.
74. Yakabe, H., Ogiwara, T., Hishinuma, M., and Tasuda, I., 2001, “3-D Model Calculation for Planar SOFC”, J. Power Sources, Vol.102 (1-2), pp. 144-154.
75. Iwata, M., 2000, “Performance Analysis of Planar-Type Unit SOFC Considering Current and Temperature Distributions”, Solid State Ionics, 132(3-4), pp. 297-308.
76. Cheng, C. H., Fei, K. and Hong, C. W., 2005, “Computer Simulation of Hydrogen Proton Exchange Membrane and Direct Methanol Fuel Cells”, Comput. Chem. Eng., in print.