簡易檢索 / 詳目顯示

研究生: 鄭欽獻
Chin-Hsien Cheng
論文名稱: 燃料電池電解質奈米尺度離子動態輸送模擬
Ionic Dynamics of Nano-Scale Transport Phenomena inside Fuel Cell Electrolytes
指導教授: 洪哲文
Che-Wun Hong
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 109
中文關鍵詞: 燃料電池奈米尺度輸送現象分子動力學多尺度模擬
外文關鍵詞: Fuel Cell, Nano-scale, Transport Phenomenon, Molecular Dynamics, Multi-scale Modelling
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    本論文使用分子動力學模擬對燃料電池電解質內之離子動態輸送現象進行研究分析。本論文研究之燃料電池種類主要是固態氧化物燃料電池(SOFC)以及質子交換模式燃料電池(PEMFC)。質子交換模式燃料電池電解質所選用之材料為Nafion,此材料為一高分子材料,至於固態氧化物燃料電池之電解質則選用了Yttria stabilized zirconia (YSZ) and yttria doped ceria (YDC)這兩種材料。
    氧離子在固態氧化物燃料電池電解質內部之傳遞現象為一非連續之跳躍行為,不同的Y2O3添加濃度以及不同溫度對氧離子傳導率的影響在本論文中也有深入的探討。模擬結果顯示Y2O3添加濃度對氧離子的傳導來說有一最佳的濃度(YSZ: 8.0 mol%以及YDC: 10.2 mol%)且溫度越高氧離子的傳導率越好。
    同時本論文也利用了分子動力學研究質子在不同的電解質(Nafion)水含量以及不同溫度下所展現的不同動態行為,這四個不同的水含量分別為3、 6.125、9以及 15.375 H2O/SO3-),三個不同的操作溫度分別為333K、343K和353K。研究結果顯示碳原子以及氟原子表現出了疏水的特性,而磺酸根(SO3-)的部分則表現出親水性的特性。質子在電解質內的傳遞效果隨著水含量以及溫度的增加而增加,因為磺酸根和水分子所形成的親水性傳遞區域會隨著水含量和溫度增加而變大。由模擬可以算出在不同操作條件下的質子擴散係數,所得到的值與實驗值的趨勢相當吻合。


    Nano-scale analyses were performed to investigate the ion transport phenomena inside fuel cell electrolytes. Molecular dynamics (MD) techniques were employed to carry out the ionic dynamics simulation. Example fuel cells involved in this thesis are solid oxide fuel cells (SOFCs) and proton exchange membrane fuel cells (PEMFCs). The chosen electrolytes for the SOFC are the traditional yttria stabilized zirconia (YSZ) and the modern yttria doped ceria (YDC), while the Nafion® polymer is for the PEMFC.
    The transport mechanism of oxygen ions inside the SOFC electrolyte is proved to be through non-continuous hopping between oxygen vacancies. Influences of Y2O3 concentrations and operation temperatures on the ionic conductivity were studied. Simulation results show that there exists an optimal concentration (8.0 mol% for YSZ and 10.2 mol% for YDC) for the nano-scale transport. Also higher operation temperature promotes the oxygen ion move-ability that increases the ionic conductivity.
    An investigation of proton dynamics at various hydration levels and thermal conditions inside the Nafion membrane has been carried out also based on the molecular dynamics technique. Semi-empirical quantum mechanics calculations were performed to optimize the complex molecular structure of the polymer. The atomistic simulation was conducted at four different hydration levels (3, 6.125, 9 and 15.375 H2O/SO3-) and three different thermal conditions (333 K, 343 K and 353 K). Simulation results show that different ionic segregations toward the hydrophobic (near fluorocarbon) and hydrophilic (sulfonate acid groups) regions. It is also found that higher temperature enhances the size of the hydrophilic phase. The diffusion coefficients of protons (or hydroniums) at various conditions have been evaluated and the comparison with experimental data shows good agreements.

    TABLE OF CONTENT Abstract I Table of Content II List of figures IV List of Tables IX Nomenclature…………………………………………………………………...……IX Chapter 1 Introduction 1 1.1 Background 1 1.2 Introduction: PEMFC and SOFC 5 1.3 Motivation 7 1.4 Literature Survey 8 1.4.1 Computer Simulation about SOFC electrolyte 8 1.4.2 Computer Simulation about PEMFC electrolyte 11 Chapter 2 Molecular Dynamics Simulation of High Temperature and Low Temperature SOFC electrolytes (YSZ and YDC) 13 2.1 Atomistic Model…………………………………………………………….13 2.2 Interaction Potential Function 16 2.3 Simulation Process and Numerical Scheme 18 2.4 Results and Discussion 22 2.4.1 Monitoring equilibrium-YSZ 22 2.4.2 Ionic transport process-YSZ 26 2.4.3 Mean square displacement and ionic conductivity 30 2.4.5 Molecular structure-YSZ………… 34 2.4.6 System energies and ionic transport process-YDC………… 39 2.4.7 Mean square displacement and ionic conductivity-YDC 45 2.4.8 Molecular structure-YDC………… 50 Chapter 3 Molecular Dynamics Simulation of PEMFC electrolyte (Nafion®) 55 3.1 Atomistic Model………… 55 3.2 Interaction Potential Function 58 3.2.1 Intermolecular potential function 60 3.2.2 Intramolecular potential function …………………………………..61 3.3 Details of the Simulation……………….. 63 3.4 Results and Discussion………………… 65 3.4.1 System equilibrium………………………………………………….65 3.4.2 Dynamics of hydroniums and water molecules….………………....70 3.4.3 Molecular structure 74 3.4.4 Water clusters and aggregation analysis………… 81 3.4.5 Temperature effect analysis 83 Chapter 4 The Concept of Multi-scale Modeling 86 4.1. Semi-Empirical Relation 86 4.2. Implement into CFD Model with Electrochemistry Kinetics 88 4.2.1 CFD model………….……………………………………………….88 4.2.2 Results of the multi-scale modeling...……………………………….90 Chapter 5 Conclusions 96 5.1 MD Simulation of SOFC 96 5.2 MD Simulation of PEMFC 97 5.3 Concept of the Multi-Scale Modeling………………………………………98 5.4 Contributions 98 5.5 Future Work 100 References……………………………………………………………………..…102 LIST OF FIGURES Fig 1.1 Energy consumption tendency of the world 1 Fig 1.2 Annual energy consumption per person of selected Asia country 2 Fig 1.3 Carbon emission per person of selected Asia country 3 Fig 1.4 Different kinds of fuel cells and their characteristics 4 Fig 1.5 Schematic diagram of how fuel cell works 4 Fig 1.6 Schematic diagram of the Nafion® structure 6 Fig 1.7 Schematic diagram of the YSZ fluorite structure (single unit cell) 7 Fig 2.1 (a) System arrangement of the single unit cell (b) illustration of tetrahedral geometry (c) illustration of octahedral geometry………………...…………14 Fig 2.2 Initial positions of all atoms (8.0 mol%) (a) 3D view (b) XY plane view (c) YZ plane view (d) XZ plane view……...…………………….…………….15 Fig 2.3 Total potential energies of the simulation system for (a) different Y2O3 concentrations at 1273K and (b) different temperatures at 8.0 mol% 24 Fig 2.4 Temperature distributions of the simulation system for different Y2O3 concentrations at 1273K (a) 5.9 (b) 8.0 (c) 10.2 and (d) 12.5 mol% 25 Fig 2.5 Temperature distributions of the simulation system for different temperatures at 8 mol% of Y2O3………………………………………………………........26 Fig 2.6 (a)Three-dimensional trajectories of cations (Y3+ and Zr4+) and projections at (b)X-Y plane (c) X-Z plane and (d) Y-Z plane 28 Fig 2.7 Discrete hopping transport of an oxygen ion at (a) 1273K (b) 1759K (c) 2057K 29 Fig 2.8 (a) Mean square displacements of the simulation system and (b) the comparison of calculated oxygen ionic conductivities and experimental data [60] for 5.9 mol%, 8.0 mol%,10.2 mol% and 12.5 mol% at 1273K………32 32 Fig 2.9 Mean square displacements at different temperatures (a) 973k, 1073K, 173K and 1273K (b) 1759 and 2057k at 8.0 mol% 33 Fig 2.10 Comparison of calculated oxygen ionic conductivities and experimental data [60] for 973K, 1073K, 1173K, 1273K, 1759K and 2057K 34 Fig 2.11 Radial distribution functions of (a) Zr-Zr and (b) Y-Y ion pair for different Y2O3 concentrations at 1273K ......................................................................36 Fig 2.12 Radial distribution functions of (a) Zr-O and (b) Y-O ion pair for different Y2O3 concentrations at 1273K……………………………………………..37 Fig 2.13 Radial distribution functions of O-O ion pair (a) for different Y2O3 concentrations at 1273K and (b) for different temperatures at 8 mol% 38 Fig 2.14 Total potential energies of the simulation system for (a) different Y2O3 concentrations at 1023K and (b) different temperatures at 10.2 mol%.........40 Fig 2.15 Temperature distributions of the simulation system for different Y2O3 concentrations at 1023K (a) 5.3 (b) 8.0 (c) 10.2 (d) and (d) 12.5 mol%.......41 Fig 2.16 Temperature distributions of the simulation system for different temperatures at 10.2 mol%.................................................................................................42 Fig 2.17 (a)Three-dimensional trajectories of cations (Y3+ and Ce4+) and projections at (b)X-Y plane (c) X-Z plane and (d) Y-Z plane……………………………..43 Fig 2.18 Discrete hopping transport of oxygen ion at (a) 873K (b) 1173K (c) 1273K and (d) 1473K………..……………………………………………………..44 Fig 2.19 (a) Mean square displacements of the simulation system and (b) the comparison of calculated oxygen ionic conductivities and experimental data [61] for 5.3 mol%, 8.0 mol%,10.2 mol%, 14.9 mol% and 19.9 mol% at 1023K………………………………………………………………………47 Fig 2.20 Relation between the mobility of vacancies and number of vacancies at 1023K………………………………………………………………………48 Fig 2.21 (a) Mean square displacements of the simulation system and (b) the comparison of calculated oxygen ionic conductivities and experimental data [60, 61] for 873K, 973K, 1173K, 1273K, 1373K and 1473K at 10.2 mol%.............................................................................................................49 Fig 2.22 Radial distribution functions of (a) Ce-Ce and (b) Y-Y ion pair for different Y2O3 concentrations at 1023K Fig 3.1 Structure formula of Nafion® 51 Fig 2.23 Radial distribution functions of (a) Zr-O and (b) Y-O ion pair for different Y2O3 concentrations at 1023K…………………………..…………………52 Fig 2.24 Radial distribution functions of O-O ion pair (a) for different Y2O3 concentrations at 1023K and (b) for different temperatures at 10.2 mol%...53 Fig 2.25 Radial distribution functions of Y-vacancy ion pair for different Y2O3 concentrations at 1023K……………………………………………………54 Fig 3.1 Structure formula of Nafion, the subscript x equals 5-10, y equals 1000 and z equals 1-2…………………………………………………………………56 Fig 3.2 Molecular structure of Nafion fragment used in the MD simulation (correspond to x=7, y=1 and z=1 of real Nafion chemical structure shown in Fig. 3.1).. 57 Fig 3.3 Charge distribution of a single Nafion fragment 57 Fig 3.4 Structure and charge distribution of the hydroxonium (H3O+) 58 Fig 3.5 Structure and charge distribution of the water molecule 59 Fig 3.6 Schematic diagram of the van der Waals interaction 60 Fig 3.7 Schematic diagram of the valence bond interaction 61 Fig 3.8 Schematic diagram of the valence angle interaction 62 Fig 3.9 Schematic diagram of the torsion interaction 63 Fig 3.10 Total potential energies of the simulation system for different hydration levels (a) 3 H2O/SO3- (b) 6.125 H2O/SO3- (c) 9 H2O/SO3- and (d) 15.375 H2O/SO3- at a fixed temperature of 353K…………………………………66 Fig 3.11 Temperature distributions of the simulation system for different hydration levels (a) 3 H2O/SO3- (b) 6.125 H2O/SO3- (c) 9 H2O/SO3- and (d) 15.375 H2O/SO3- at a fixed temperature of 353K 67 Fig 3.12 Total potential energies of the simulation system for different temperature (a) 333K (b) 343K at a fixed water content of 15.375 H2O/SO3- 68 Fig 3.13 Temperature distribution of the simulation system for different temperatures (a) 333K (b) 343K at a fixed water content of 15.375 H2O/SO3-…………69 Fig 3.14 Density and volume of the MD simulation cell at different water contents 70 Fig 3.15 Mean square displacements (MSD) of (a)hydroniums and (b)water molecules for different hydration levels (3, 6.125, 9 and 15.375 H2O/SO3-) at 353K 72 Fig 3.16 Comparison of the predicted (a) hydronium and (b) water diffusion coefficients between MD simulation and Experiments [68, 69] for different hydration levels (3, 6.125, 9 and 15.375 H2O/SO3-) at 353K 73 Fig 3.17 Three-dimensional trajectory of a specific hydronium during the MD simulation period (small cyan sphere: oxygen atom of H3O+, large multi-colored sphere: sulfur atoms of SO3-) 74 Fig 3.18 Radial distributions of (a) carbon- Owater (b) fluorine- Owater and (c) ether-like oxygen- Owater for different hydration levels (3, 6.125, 9 and 15.375 H2O/SO3-) at 353K 77 Fig 3.19 Radial distributions of (a) OSulfur-OWater and (b) OSulfur-OHydronium for different hydration levels (3, 6.125, 9 and 15.375 H2O/SO3-) at 353K 78 Fig 3.20 Radial distributions of (a) OWater-OWater and (b) OHydronium -OHydronium for different hydration levels (3, 6.125, 9 and 15.375 H2O/SO3-) at 353K 79 Fig 3.21 Radial distributions of OHydronium -OWater for different hydration levels (3, 6.125, 9 and 15.375 H2O/SO3-) at 353K………………………...…………80 Fig 3.22 Distribution of water clusters inside the system for water contents of (a) 3 (b) 6.125 (c) 9 and (d) 15.375 H2O/SO3- 82 Fig 3.23 Mean square displacements (MSD) of (a) hydroniums and (b) water molecules for different temperatures (333, 343 and 353K) at the water content of 15.375 H2O/SO3-………………………………………………..84 Fig 3.24 Distribution of water clusters inside the system at (a) 333K (b) 343K and (c) 353K………………………………………………………………………..85 Fig 4.1 Power curve fitting of the MD simulation results (973K, 1073K, 1173K, 1273K, 1759K and 2057K)……………………..…………………………87 Fig 4.2 Geometry of the SOFC model……………………………………………….88 Fig 4.3 (a) Velocity distribution and (b) pressure distribution of the SOFC…………92 Fig 4.4 Concentration distribution of the (a) anode (b) cathode of the SOFC…….....93 Fig 4.5 Temperature distribution of the SOFC (a) slice at XY plane (b) slice at YZ plane…………………………………………………………………94 Fig 4.6 Temperature distribution of the Electrolyte surface (a) anode side (b) cathode side…………………………………………………………………………95 LIST OF TABLES Table 2.1 Parameters for the Meyer-Buckingham pair potential function –YSZ [56]. 17 Table 2.2 Parameters for the Meyer-Buckingham pair potential function –YDC [56]. 17 Table 2.3 Amount of atoms under different concentration-YSZ 19 Table 2.4 Amount of atoms under different concentration-YDC 19 Table 2.5 Values of parameter used for 5th order differential equations [25] 21 Table 3.1 Corresponding numbers of molecules in different simulation cases 58 Table 4.1 Source terms of governing equations……………………………………...90

    References

    1. Williams, K. R., 1966, An Introduction To Fuel Cells, Elsevier Publishing Company, Chap 1.
    2. Annual Energy Review 2003, Energy Information Adiministration, Sep.2004.
    3. USDOE, Fuel Cell Handbook7th edition, 2004.
    4. Mouritsen, O.G., Computer Studies of Phase Transitions and Critical Phenomena, Springer-Verlag, Berlin, 1984.
    5. Shimojo, F., Okabe, T., Tachibana, F., Kobayashi, M., and Okazaki, H., 1992, “Molecular dynamics studies of yttria stabilized zirconia. I. structure and oxygen diffusion,” J. Phys. Soc. Japan, Vol.61 (8), pp. 2848-2857.
    6. Shimojo, F., and Okabe, T, 1992, “Molecular dynamics studies of yttria stabilized zirconia II. microscopic mechanism of oxygen diffusion,” J. Phys. Soc. Japan , Vol.61 (11), pp. 4106-4118.
    7. Fisher, C., A. J., and Matsubara, H., 1998, “Oxide ion diffusion along grain boundaries in zirconia: a molecular dynamics study,” Solid State Ionics, Vol.113-115, pp. 311-318.
    8. Fisher, C. A. J., and Matsubara, H., 1999, “Molecular dynamics investigations of grain boundary phenomena in cubic zriconia,” Comput. Mater. Sci., Vol.14 (1-4), pp. 177-184.
    9. Tojo, T., and Kawaji, H., Atake, T., 1999, “Molecular dynamics study on lattice vibration and heat capacity of yttria-stabilized zirconia,” Solid State Ionics, Vol.118 (3-4), pp. 349-353.
    10. Li, X., and Hafskjold, B., 1995 “Molecular Dynamics Simulation of Yttria- Stabilized Zirconia”, J. Phys.: Condensed Matter, Vol.7 (7), p.p.1255-1271
    11. Brinkman, H., W., Briels, W., J., and Verweij, H., 1995, “Molecular Dynamics Simulation of Yttria-Stabilized Zirconia,” Chem. Phys. Lett., Vol.247 (4-6), p.p. 386-390.
    12. Perumal, T., P., Sridhar, V., Murthy, K., P., N., Easwarakumar, K., S., and Ramasamy, S., 2002, “Molecular Dynamics Simulation of Oxygen Ion Diffusion in Yttria-Stabilized Zirconia,” Physica A, Vol.309 (1-2), p.p.35-44.
    13. Yamamura, Y., Kawasaki, S., and Sakai, H., 1999, “Molecular Dynamics Analysis of Ionic Conduction Mechanism in Yttria-Stabilized Zirconia,” Solid State Ionics, Vol.126 (1-2), p.p.181-189.
    14. Sawaguchi, N., and Ogawa, H., 2000, “Simulated diffusion of oxide ions in YO1.5-ZrO2 at high temperature,” Solid State Ionics, Vol.128 (1-4), p.p. 183-189.
    15. Herle, J. V., Horita, T., Kawada, T., Sakai, N., Yokokawa, H., and Dokiya, M., 1996, “Low Temperature Fabrication of (Y,Gd,Sm)-doped ceria electrolyte,” Solid State Ionics, Vol.86-88 (2), p.p. 1255-1258.
    16. Herle, J. V., Horita, T., Kawada, T., Sakai, N., Yokokawa, H., and Dokiya, M., 1997, “Fabrication and Sintering of Fine Yttria-Doped Ceria Powder,” J. Am. Ceram. Soc., Vol.80 (4), p.p. 933-940
    17. Mogensen, M., Sammes, N. M., and Tompsett, G. A., 2000, “Physical, Chemical and Electrochemical Properties of Pure and Doped Ceria,” Solid State Ionics, Vol.129 (1-4), p.p. 63-94.
    18. Hong, S. J., and Virkar, A. V., 1995, “Lattice Parameters and Densities of Rare-Earth Oxide Doped Ceria Electrolytes,” J. Am Ceram. Soc., Vol.78 (2), p.p. 433-39.
    19. Rey, J. F. Q., and Muccillo, E. N. S., 2004, “Lattice Parameters of Yttria-Doped Ceria solid electrolytes,” J. Eur. Ceram. Soc., Vol.24 (6), p.p. 1287-1290.
    20. Chavan, S. V., mathews, M. D., and Tyagi, A. K., 2004, “Phase Relations and Thermal Expansion Studies in the Ceria-Yttria System,” J. Am. Ceram. Soc., Vol.87 (10), p.p. 1977-1980.
    21. Wang, D. Y., Park, D. S., Griffith, J., and Nowick, A. S., 1981, “Oxygen-Ion Conductivity and Defect Interactions in Yttria-Doped Ceria,” Solid State Ionics, Vol.2 (2), p.p. 95-105.
    22. Minervini, L., Zacate, M. O., and Grimes, R. W., 1999, “Defect Cluster Formation in M2O3-Doped CeO2,” Solid State Ionics, Vol.116 (3-4), p.p. 339-349.
    23. Cheng, C. H., Chang, Y. W., and Hong, C. W., 2005, “Multiscale Parametric Studies on the Transport Phenomenon of a Solid Oxide Fuel Cell,”ASME J. Fuel Cell Science and Technology, Vol.2 (4), p.p. 219-25.
    24. Agmon, N., 1995, “The Grotthuss Mechanism,” Chem. Phys. Lett., Vol.13 (5-6), p.p. 456-462.
    25. McLean, R. S., Doyle, M., and Sauer, B. B., 2000, “High-Resolution Imaging of Ionic Domains and Crystal Morphology in Ionomers Using AFM Techniques,” Macromolecules, Vol.33 (17), p.p. 6541-6550.
    26. Affoune, A. M., Yamada, A., and Umeda, M., 2004, “Surface Observation of Solvent-Impregnated Nafion Membrane with Atomistic Force Microscopy,” Langmuir, Vol.20 (17), p.p. 6965-6968.
    27. James. P. J., Elliott, J. A, and T. J. McMaster, Newton, J. M., Elliot, A. M. S., Hanna, S. and Miles, M. J., 2000, “Hydration of Nafion Studied by AFM and X-ray Scattering,” J. Membrane Sci., Vol.35 (20), p.p. 5111-5119.
    28. Boyle, N. G., McBrierty, V. J., and Eisenberg, A., 1983, “NMR Investigation of Molecular Motion in Nafion Membranes,” Macromolecules, Vol.16 (1), p.p. 80-84.
    29. Boyle, N. G., McBrierty, V. J., and Douglass, D. C., 1983, “A Study of the Behavior of Water in Nafion Membranes,” Macromolecules, Vol.16 (1), p.p. 75-80.
    30. Schlick, S., Gebel, G., Pineri, M., and Volino, F., 1991, “F NMR Spectroscopy of Acid Nafion Membranes and Solutions,” Macromolecules, Vol.24 (12), p.p. 3517-3521.
    31. Fujimura, M., Hashimoto, T., and Kawai, H., 1981, “Small-Angle X-ray Scattering Study of Perfluorinated Ionomer Membranes. 1. Origin of Two Scattering Maxima,” Macromolecules, Vol.14 (5), p.p. 1309-1315.
    32. Gierke, T. D., Munn, C. E., Wilson, F. C., and du Pont de, E. I., 1981, “The Morphology in Nafion Perfluorinated Membrane Products, as Determined by Wide-and Small Angle X-ray Studies,” J. Polym. Sci. Pol. Phys., Vol.19 (11), p.p. 1687-1704.
    33. Lowry, S. R., and Mauritz, A., 1980, “An Investigation of Ionic Hydration Effects in Perfluorosulfonate Ionomers by Fourier Transform Infrared Spectroscopy,” J. Am. Chem. Soc., Vol.102 (14), p.p. 4665-4667.
    34. Falk, M., 1980, “An infrared Study of Water in Perfluorosulfonate (Nafion) membranes,” Can. J. Chem., Vol.58 (14), p.p. 1495-1501.
    35. Hsu, W. Y., and Gierke, T. D., 1983, “Ion Transport and Clustering in Nafion Perfluorinated Membranes,” J. Mem. Sci., Vol.13, p.p. 307-326.
    36. Ennari, J., Elomma, M., and Sundholm, F., 1999, “Modelling a Polyelectrolyte System in Water to Estimate the Ion-Conductivity,” Polymer, Vol.40 (18), p.p. 5035-5041
    37. Ennari, J., Neelov, I., and Sundholm, F., 2000, “Molecular Dynamics Simulation of the PEO Sulfonic Acid Anion in Water” Comput. Theor. Polym. Sci., Vol.10 (5), p.p. 5035-5041
    38. Ennari, J., Neelov, and Sundholm, F., 2000, “Molecular Dynamics Simulation of the Structure of PEO Based Solid Polymer Electrolytes,” Polymer, Vol.41 (11), p.p. 4057-4063.
    39. Ennari, J., Elomaa, M., Neelov, I., and Sundholm, F., 2000, “Modeling of water-free and water containing solid polyelectrolytes,” Polymer, Vol.41 (3), p.p. 985-990.
    40. Ennari, J., Neelov, I., and Sundholm, F., 2001, “Estimation of the ion conductivity of a PEO-based polyelectrolyte system by molecular modeling”, Polymer, vol.42 (19), p.p.8043-8050.
    41. Spohr, E., 2004, “Molecular Dynamics Simulations of Proton Transfer in a Model Nafion Pore,” Molecular Simulation, Vol.30 (2-3), p.p. 107-115.
    42. Paddison, S., J., and Zawodzinski Jr., T., A., 1998, “Molecular modeling of the pendant chain in Nafion®”, Solid State Ionics, Vol.113-115 (), p.p. 333-340
    43. Elliott, J., A., Hanna, S., Elliot, A. M. S., and Cooley, G. E., 1999, “Atomistic simulation and molecular dynamics of model systems for perfluorinated ionomer membranes,” Phys. Chem. Chem. Phys., Vol.1 (20), pp. 4855-4863
    44. Jinnouchi, R., and Okazaki, K., 2003, “Molecular dynamics study of transport phenomena in perfluorosulfonate ionomer membranes for polymer electrolyte fuel cells,” J. Electrochem. Soc., Vol.150 (1) E66-E73.
    45. Spohr, E., Commer, P., and Kornyshev, A. A., 2002, “Enhancing Proton Mobility in Polymer Electrolyte Membranes: Lessons from Molecular Dynamics Simulations,” J. Phys. Chem. B, Vol.106 (41), p.p. 10560-10569.
    46. Petersen, M. K., Wang, F., Blake, N. P., Metiu, H., and Voth, G. A., 2005, “Excess Proton Solvation and Delocalization in a Hydrophilic Pocket of the Proton Conducting Polymer Membrane Nafion,” J. Phys. Chem. B Lett., Vol.109 (9), p.p. 3727-3730.
    47. Cheng, C. H., and Hong, C. W., 2006, “Investigation of Atomistic Scale Transport Phenomena of the PEMFC,” ASME J. Fuel Cell Science and Technology, in print (assigned to issue: 2007, Nov)
    48. Urata, S., Irisawa, J., Takada, A., Shinoda, W., Tsuzuki, S., and Mikami, M., 2005, “Molecular Dynamics Simulation of Swollen Membrane of Perfluorinated Ionomer,” J. Phys. Chem. B, Vol.109 (9), p.p. 4269-4278.
    49. Vishnyakov, A., and Neimark, A. V., 2001, “Molecular Dynamics Simulation of Microstructure and Molecular Mobilities in Swollen Nafion Membranes,” J. Phys. Chem. B, Vol.105 (39), 9586-9594.
    50. Blake, N. P., Petersen, M. K., Voth, G. A. and Metiu, H., “Structure of Hydrated Na-Nafion Polymer Membranes,” J. Phys. Chem. B, Vol.109 (51), p.p. 24244-24253.
    51. Vishnyakov, A., and Neimark, A. V., 2000, “Molecular Simulation of Nafion Membrane Solvation in Water and Methanol,” J. Phys. Chem. B, Vol.104 (18), p.p. 4471-4478.
    52. Vishnyakov, A., and Neimark, A. V., 2001, “Molecular Dynamics Simulation of Nafion Oligomer Solvation in Equimolar Methanol-Water Mixture,” J. Phys. Chem. B, Vol.105 (32), p.p. 7830-7834.
    53. Jang, S. S., Molinero, V., Cagin, T., and Goddard, W. A., 2004, “Nanophase-Segregation and Transport in Nafion 117 from Molecular Dynamics Simulations: Effect of Monomeric Sequence,” J. Phys. Chem. B, Vol.108 (10), p.p. 3149-3157.
    54. Paddison, S. J., and Elliott, J. A., 2005, “Molecular Modeling of the Short-Side-Chain Perfluorosufonic Acid Membrane,” J. Phys. Chem. A, Vol.109 (33), p.p. 7583-7593.
    55. Haile, J. M., 1997, Molecular Dynamics Simulation: Elementary Methods, Wiley Press, New York.
    56. Lewis, G. V., and Catlow, C. R. A.,1985, “Potential Models for Ionic Oxides,” J. Phys. C: Solid State Phys., Vol.18 (6) p.p. 1149-1161.
    57. Allen, M., P., and Tildesley, D., J., 1987, Computer Simulation of Liquids, Oxford Science Publication.
    58. Gear C. W., 1971, Numerical Initial Value Problems in Ordinary Differential Equations, Chap.9, Englewood Cliffs, NJ.
    59. Verlet, L., 1967, “Computer ‘experiments’ on classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev., Vol.159 (1) p.p. 98-103.
    60. Ikeda, S., Sakurai, O., Uematsu, K., Mizutani, N., and Kato, M., 1985, “Electrical Conductivity of Yttria-Stabilized Zirconia Single Crystals,” J. of Mater. Sci., Vol.20 (12), p.p. 4593-4600.
    61. Herle, J. V., Horita, T., Kawada, T., Sakai, N., Yokokawa, H., and Dokiya, M., 1996, “Sintering Behaviour and Ionic Conductivity of Yttria-Doped Ceria,” J. Eur. Ceram. Soc., Vol.96 (9), p.p. 961-973.
    62. Hypercube, HyperChem reference manual, 2002; chap. 8, p296.
    63. Jorgensen, W. L., Chandrasekhar, J., and Madura, J. D., 1983, “Comparison of Simple Potential Functions for Simulating Liquid Water,” J. Chem. Phys., Vol.79 (2), p.p. 926-935.
    64. Mayo, S. L., Olfason, B., D., and Goddard, W. A., 1990, “DREIDING: A Generic Force Field for Molecular Simulations,” J. Phys. Chem., Vol.94 (26), p.p. 8897-8909.
    65. Smith, W., Leslie, M., and Forester, T., R., The dlpoly_2 user manual, CCLRC, Daresbury Laboratory, 2003.
    66. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W.; DiNola, A; Haak, J. R. 1984, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys., Vol.81, 3684-3690.
    67. Ryckaert, J. P., Ciccotti, G., and Berendsen, H., J., C., 1977, “Numerical Integration of the Cartesian Equations of Motion of a System with Constrains: Molecular Dynamics of n-Alkanes,” J. Comput. Phys., Vol.23, p.p. 327-341.
    68. Morris, D. R., and Sun, X., 1993, “Water-Sorption and Transport Properties of Nafion 117 H,” J. Appl. Polym. Sci., Vol.50, p.p. 1445-1452.
    69. Zawodzinski, T. A., Neeman, M., Sillerud, L. O., and Gottesfeld, S., 1991, “Determination of Water Diffusion Coefficients in Perfluorosulfonate Ionomeric Membranes,” J. Phys. Chem., Vol.95, p.p. 6040-6044.
    70. Vishnyakov, A., and Neimark, A., V., 2000, “Molecular Simulation Study of Nafion Membrane Salvation in Water and Methanol”, J. Phys. Chem. B, Vol.104 (18), p.p. 4471-4478
    71. Vishnyakov, A., and Neimark, A., V., 2000, “Molecular Dynamics Simulation of Nafion Oligomer Solvation in Equimolar Methanol-Water Mixture”, J. Phys. Chem. B, Vol.105 (32), p.p. 7830-7834.
    72. Verlet, L., 1961, “Computer ‘experiment’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. Vol.159 (1), p.p. 98-103.
    73. Recknagle, K.P., Williford, R. E., Chick, L. A., Rector, D. R., and Khaleel, M. A., 2003, “Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks,” J. Power Sources, Vol. 113 (1), pp. 109-114.
    74. Yakabe, H., Ogiwara, T., Hishinuma, M., and Tasuda, I., 2001, “3-D Model Calculation for Planar SOFC”, J. Power Sources, Vol.102 (1-2), pp. 144-154.
    75. Iwata, M., 2000, “Performance Analysis of Planar-Type Unit SOFC Considering Current and Temperature Distributions”, Solid State Ionics, 132(3-4), pp. 297-308.
    76. Cheng, C. H., Fei, K. and Hong, C. W., 2005, “Computer Simulation of Hydrogen Proton Exchange Membrane and Direct Methanol Fuel Cells”, Comput. Chem. Eng., in print.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE