研究生: |
蘇宜貞 Yi-Chen Su |
---|---|
論文名稱: |
介電泳細胞操控之生醫系統晶片設計與分析 Design and analysis of bio system chip via 3-D dielectrophoresis control |
指導教授: |
劉承賢
Cheng-Hsien Liu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 51 |
中文關鍵詞: | 介電泳 |
外文關鍵詞: | dielectrophoresis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的發展趨勢與知識的演進,許多領域的研究都逐漸對微小尺度下的現象及應用產生興趣,在生醫範疇的研究上尤其如此。生醫上許多新穎的研究題材,如光鉗或微鑷夾等,都是為了達到對細胞進行良好操縱之目的。由於目前研究的尺度不同於往,所以急需與細胞尺寸相符的新工具,許多的新方法與應用因應而生。在目前積極發展基因工程及單一細胞等相關研究的狀況下,微機電技術微小化的特色使其在生醫科技方面的應用與發展成為重要研究議題之一。本論文研究利用“介電泳”操控所設計的生醫系統晶片,可在微尺度下以非接觸力進行細胞操控,並可避免操控過程中對細胞產生傷害。
本論文以三維電場進行對細胞的操控,因此可操控的細胞分佈之高度範圍較大,有助於突破以往平面電極在有效工作高度上的限制。研究中利用平面電極與ITO玻璃建立三維電場,以省去上下電極對位之步驟,簡化製程難度。本文首先就過去相關的文獻進行探討,並以介電泳理論及CFD-RC軟體之數值模擬進行分析與驗證,進而依理論分析結果提出一整合性之生醫系統晶片,最後進行細胞實驗驗證此生醫系統晶片之可行性與功能。
Along with the trend on technology development and the knowledge evolution, here gradually comes lots of interest on how the minute objects act and how we can really apply those objects into use in many research territories, especially in biomedicine category. There are so many new research topics in biotech category, such as the optical tweezers and micro-gripper etc. They are targeted for good manipulation of cell. Since the size of what people study differs from that of traditional studies, we need the tools which have the dimension compatible with the cell size. Therefore, it comes out many new methods and applications. Recently, under the condition of developing the related researches, such as genetic engineering and single cell…etc. actively, The special feature of Micro-Electrical-Mechanical-System (MEMS), miniaturization, makes itself become one of the hot research subjects in the biomedicine technology category. This bio-chip, which is presented in this thesis and designed based on the theory of dielectrophoresis(DEP), can function for the manipulation of cells with non-contact force in micro scale. The non-contact force has the advantage of minimizing damage possibility.
The cell manipulation via three-dimensional electric fields in this thesis allows the more precise manipulation on cells and overcomes the drawback of cell manipulation via planed electrodes. This thesis first introduces the survey of literatures, propose a novel chip design and prove the feasibility of the design concepts via the theory of DEP and the numerical analysis with CFD-RC. Furthermore, we synthesize this bio-chip system on the basis of our numerical analysis. Finally, the feasibility and the functions of this bio-chip system are verified via bio experiments.
[1] M. W. Berns, "Laser Scissors and Tweezers," Sci. Am., April 1998.
[2] C. J. Kim, A. P. Pisano, R. S. Muller, M. G. Lim, "Polysilicon Microgripper," Tech. Dig., IEEE Solid-State Sensor and Actuator Workshop, 48-51, June 1990.
[3] C. J. Kim, A. P. Pisano, R. S. Muller, M. G. Lim, "Silicon-Processed Overhanging Microgripper," J. MEMS, Vol.1, No.3, 31-36, March 1992.
[4] A. P. Lee, D. R. Ciarlo, P. A. Krulevitch, S. Lehew, J. Trevino, M. A. Northrup, "A Practical Microgripper by Fine Alignment, Eutectic Bonding and SMA Actuation," Tech. Dig., Transducers '95, 368-371, June 1995.
[5] A. Ashkin and J. M. Dziedzic, "Optical Trapping and Manipulation of Viruses and Bacteria," Science, Vol.235, 1517-1520, March 1987.
[6] K. O. Greulich, "Micromanipulation by light in Biology and Medicine," Birkhauser Verlag, Basel, 39-87, 1999.
[7] Y. Tadir, W. H. Wright, O. Vafa, T. Ord, R. H. Asch, M. W. Berns, "Micromanipulation of Sperm by a Laser Generated Optical Trap," Fertility and Sterility, Vol.52, No.5, 870-873, November 1989.
[8] M. Ozkan, T. Pisanic, J. Scheel,| C. Barlow,| S. Esener, and S. N. Bhatia.
"Electro-Optical Platform for the Manipulation of Live Cells, " Langmuir 2003, 19, 1532-1538
[9] A. P. Lee, D. R. Ciarlo, P. A. Krulevitch, S. Lehew, J. Trevino, M. A. Northrup, "A Practical Microgripper by Fine Alignment, Eutectic Bonding and SMA Actuation," Tech. Dig., Transducers '95, 368-371, June 1995.
[10] C. J. Kim, A. P. Pisano, R. S. Muller, M. G. Lim, "Silicon-Processed Overhanging Microgripper," J. MEMS, Vol.1, No.3, 31-36, March 1992.
[11] Helene Andersson, Albert van den Berg, "Microfluidic devices for cellomics: a review," Sensors and Actuators B 92 (2003) 315–325
[12] Dongeun Huh et al., "Gravity-Driven-Microhydrodynamics-Based Cell Sorter (microHYCS) for Rapid, Inexpensive, and Efficient Cell Separation and Size-Profiling", IEEE MEMS 2002, Poster180
[13] R.A. Haldon, and B.E. Lee, "Structure and permeability of porous films of poly(hydroxyl ethyl methacrylate), " Br.Polym., vol. 4, 1972. pp.491-501
[14] Y. Huang, K. Ewalt, M. Tirado, R. Haigis, A. Forster, D. Ackley, M. Heller, J. O’Connell, M. Krihak, "Electric manipulation of bioparticles and macromolecules on microfabricated electrodes," Anal. Chem. 73 (2001) 1549–1559.
[15] K. L. Chan, N. G. Green, M. P. Hughes, H. Morgan, "Cellular Characterization and Separations: Dielectrophoretically Activated Cell Sorting (DACS)," Proc. IEEE Conf. Eng. Medi. and Biol., Vol.6, 2953-2956, 1998.
[16] C. Chou, M. Morgan, F. Zenhausern, C. Prinz, R. Austin, "Electrodeless Dielectrophoretic Trapping and Separation of Cells, " microTAS, 2002, pp. 25–27.
[17] Aaron T. Ohta, Pei-Yu Chiou, and Ming C. Wu, " DYNAMIC ARRAY MANIPULATION OF MICROSCOPIC PARTICLES VIA OPTOELECTRONIC TWEEZERS , " microTAS, 2002, pp. 25–27.
[18] R. Fuhr Guënter, Reichle Christoph, "Living cells in opto-electrical cages" trends in analytical chemistry, 2000, 19, 402-409.
[19] Thomas B. Jones, "Basic Theory of Dielectrophoresis and Electrorotation," Micro- & Nanoelectrokinetics
[20] Stefan Fiedler, Stephen G. Shirley, Thomas Schnelle, and Gu1nter Fuhr, "Dielectrophoretic Sorting of Particles and Cells in a Microsystem ," Anal. Chem.1998, 70,1909-1915
[21] Giovanni De Gasperis, Jun Yang, Frederick F. Becker, Peter R. C. Gascoyne, and Xiao-Bo Wang, "Microfluidic Cell Separation by 2-dimensional Dielectrophoresis," Biomedical Microdevices 2:1, 41-49, 1999
[22] TORSTEN MÜLLER, ANNETTE PFENNIG, PETRA KLEIN, GABRIELE GRADL, MAGNUS JÄGER, AND THOMAS SCHNELLE, "The Potential of Dielectrophoresis for Single-Cell Experiments," Micro- & Nanoelectrokinetics
[23] Haibo Li, Yanan Zheng, Demir Akin, and Rashid Bashir, "Characterization and Modeling of a Microfluidic Dielectrophoresis Filter for Biological Species," JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 14, NO. 1, FEBRUARY 2005