簡易檢索 / 詳目顯示

研究生: 梁凱澤
Liang, Kai Tse
論文名稱: 三維記憶體之動態考量散熱與存取模式的配置方法
Thermal-aware Dynamic Page Allocation Policy Considering Future Access Patterns for Hybrid Memory Cube (HMC)
指導教授: 黃婷婷
Hwang, Ting Ting
口試委員: 黃俊達
Huang, Juinn Dar
金仲達
King, Chung Ta
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 38
中文關鍵詞: 三維記憶體散熱存取模式
外文關鍵詞: HMC, Thermal, Access patterns
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在多核心處理器的運作下,對於記憶體的頻寬需求量也隨之提高。所以透過矽穿孔堆疊動態隨機存取的記憶體能夠滿足高頻寬的需求。然而,這堆疊的結果會導致功率密度提高,連帶產生高溫散熱的問題,舉凡資料的可靠度、記憶體效能以及額外必須負擔的冷卻成本。除了散熱的問題,在多核心的環境下,程序間的記憶體干擾亦會有損系統效能。為了達到最佳的效能,我們提出動態考量散熱與存取模式的配置方法,方法中考慮到資料的使用頻率、各層的位置分佈、散熱影響、頻寬變化量、記憶體干擾。我們利用數學分析模型估算系統效能,並考量到上述的所有影響因素。實驗結果顯示,我們提出的記憶體配置方法效能上比起傳統配置方法快12.7%。此外,我們的數學分析模型平均錯誤比率只有0.86%。


    Three-dimensional (3-D) memory stacking like Hybrid Memory Cube (HMC) can resolve
    memory bandwidth challenges for multi-core system where stacked multiple DRAM dies are
    connected by Through Silicon Vias (TSVs). However, high power density due to the high in-
    tegration incurs temperature related problems in reliability, performance, and system cooling
    cost. In addition to thermal issues, in multi-core system, memory interference between pro-
    cesses may degrade system performance. In order to achieve better performance, we propose
    a dynamic page allocation policy considering access frequency of pages, physical locations of
    DRAM dies, thermal impacts, bandwidth variation of each process, and memory interference
    among processes. We also propose an analytical model to estimate the system performance
    considering the above factors. Experimental results show that our proposed memory mapping
    policy can outperform MCP [1] 12.7% on average. The average error rate of our analytical
    model is only 0.86%.

    1 Introduction 1 2 Related Work 4 3 Motivation 6 3.1 Thermal Characteristics of Hybrid Memory Cube . . . . . . . . . . . 6 3.2 Thermal and Access Patterns Aware Dynamic OS Page Allocation 7 4 Methodology 10 4.1 Memory Channel Partitioning . . . . . . . . . . . . . . . . . . . . . . . 10 4.2 Our Thermal and Access Patterns Aware Dynamic OS Page Allo- cation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.3 Trade O between Interference, Bandwidth Variation, and Throttling 16 5 Experimental Results 22 5.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2 Results of Thermal and Access Patterns Aware Dynamic OS Page Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3 Accuracy of the Analytical Performance Model . . . . . . . . . . . . . 24 6 Conclusion 27

    [1] O. Mutlu M. Kandemir Thomas Moscibroda S. P. Muralidhara, L. Subramanian. Re-
    ducing memory interference in multicore systems via application-aware memory channel
    partitioning. In MICRO'11, pages 374-385, 2011.
    [2] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Implications of the
    obvious. In ACM SIGARCH Computer Architecture News, pages 20-24, 1995.
    [3] J. Jeddeloh and B. Keeth. Hybrid memory cube new dram architecture increases density
    and performance. In VLSI Technology (VLSIT), 2012 Symposium, pages 87-88, 2012.
    [4] B. Black, D. W. Nelson, C. Webb, and N. Samra. 3d processing technology and its
    impact on ia32 microprocessors. In Proceedings of ICCD, pages 316-318, 2004.
    [5] K. Banerjee, A. Mehrotra, A. Sangiovanni-Vincentelli, and Hu Chenming. Thermal
    e ects in deep submicron vlsi interconnects. In Design Automation Conference (DAC),
    pages 885-891, 1999.
    [6] S. Zhang and Z. Zhu. Access-aware memory thermal management. In IEEE Inter-
    national Conference on Networking, Architecture and Storage (NAS), pages 268-274,
    2014.
    [7] M. J. Khurshid and M. Lipasti. Data compression for thermal mitigation in the hybrid
    memory cube. In ICCD'13, pages 185-192, 2013.
    28
    [8] A.-C. Hsieh and T.-T. Hwang. Thermal-aware memory mapping in 3d designs. In
    DATE'09, pages 1361-1366, 2009.
    [9] J. Lin, H. Zheng, Z. Zhu, H. David, and Z. Zhang. Thermal modeling and management
    of dram memory systems. In Proceedings of the 34th annual international symposium
    on Computer Architecture (ISCA'07), pages 312-322, 2007.
    [10] X. Zhou, J. Yang, Y. Zhang, and J. Zhao. Thermal-aware task scheduling for 3d mul-
    ticore processors. In IEEE Transactions on Parallel and Distributed Systems, pages
    60-71, 2009.
    [11] S. Liu, B. Leung, A. Neckar, S. O. Memik, G. Memik, and N. Hardavellas. Hardware/-
    software techniques for dram thermal management. In 17th International Conference
    on High-Performance Computer Architecture (HPCA-17), pages 515-525, 2011.
    [12] C.-H. Lin, C.-L. Yang, and K.-J. King. Ppt: Joint performance/power/thermal man-
    agement of dram memory for multi-core systems. In Proceedings of the 34th annaual
    International Symposium on Computer Architecture, pages 93-98, 2009.
    [13] Q. Deng, D. Meisner, and A. Bhattacharjee. Mutiscale: Memory system dvfs with
    multiple memory controllers. In Proceedings of the 2012 ACM/IEEE International
    Symposium on Low power electronics and design (ISLPED'12), pages 297-302, 2012.
    [14] Shu-Yen Lin and Jin-Yi Lin. Thermal-aware architecture and mapping for multi-channel
    three-dimensional dram systems. In IEEE 3rd Global Conference on Consumer Elec-
    tronics, pages 713-714, 2014.
    [15] E. ALPAYDIN. Introduction to machine learning, 2nd ed. mit press.
    [16] P. Magnusson et al. Simics: A full system simulation platform. 2002.
    [17] M. M. K. Martin et al. Multifacets general execution-driven multiprocessor simulator
    (gems).
    [18] B. Jacob E. Cooper-Balis, P. Rosenfeld. Bu er-on-board memory systems. In ISCA'12,
    pages 392-403, 2012.
    [19] R. J. Rib M. R. Stan K. Skadron W. Huang, K. Sankaranarayanan. An improved block-
    based thermal model in hotspot 4.0 with granularity considerations. In Proceedings of
    the Workshop on Duplicating, Deconstructing, and Debunking, 2007.
    [1] O. Mutlu M. Kandemir Thomas Moscibroda S. P. Muralidhara, L. Subramanian. Re-
    ducing memory interference in multicore systems via application-aware memory channel
    partitioning. In MICRO'11, pages 374{385, 2011.
    [2] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Implications of the
    obvious. In ACM SIGARCH Computer Architecture News, pages 20{24, 1995.
    [3] J. Jeddeloh and B. Keeth. Hybrid memory cube new dram architecture increases density
    and performance. In VLSI Technology (VLSIT), 2012 Symposium, pages 87{88, 2012.
    [4] B. Black, D. W. Nelson, C. Webb, and N. Samra. 3d processing technology and its
    impact on ia32 microprocessors. In Proceedings of ICCD, pages 316{318, 2004.
    [5] K. Banerjee, A. Mehrotra, A. Sangiovanni-Vincentelli, and Hu Chenming. Thermal
    e ects in deep submicron vlsi interconnects. In Design Automation Conference (DAC),
    pages 885{891, 1999.
    [6] S. Zhang and Z. Zhu. Access-aware memory thermal management. In IEEE Inter-
    national Conference on Networking, Architecture and Storage (NAS), pages 268{274,
    2014.
    [7] M. J. Khurshid and M. Lipasti. Data compression for thermal mitigation in the hybrid
    memory cube. In ICCD'13, pages 185{192, 2013.
    28
    [8] A.-C. Hsieh and T.-T. Hwang. Thermal-aware memory mapping in 3d designs. In
    DATE'09, pages 1361{1366, 2009.
    [9] J. Lin, H. Zheng, Z. Zhu, H. David, and Z. Zhang. Thermal modeling and management
    of dram memory systems. In Proceedings of the 34th annual international symposium
    on Computer Architecture (ISCA'07), pages 312{322, 2007.
    [10] X. Zhou, J. Yang, Y. Zhang, and J. Zhao. Thermal-aware task scheduling for 3d mul-
    ticore processors. In IEEE Transactions on Parallel and Distributed Systems, pages
    60{71, 2009.
    [11] S. Liu, B. Leung, A. Neckar, S. O. Memik, G. Memik, and N. Hardavellas. Hardware/-
    software techniques for dram thermal management. In 17th International Conference
    on High-Performance Computer Architecture (HPCA-17), pages 515{525, 2011.
    [12] C.-H. Lin, C.-L. Yang, and K.-J. King. Ppt: Joint performance/power/thermal man-
    agement of dram memory for multi-core systems. In Proceedings of the 34th annaual
    International Symposium on Computer Architecture, pages 93{98, 2009.
    [13] Q. Deng, D. Meisner, and A. Bhattacharjee. Mutiscale: Memory system dvfs with
    multiple memory controllers. In Proceedings of the 2012 ACM/IEEE International
    Symposium on Low power electronics and design (ISLPED'12), pages 297{302, 2012.
    [14] Shu-Yen Lin and Jin-Yi Lin. Thermal-aware architecture and mapping for multi-channel
    three-dimensional dram systems. In IEEE 3rd Global Conference on Consumer Elec-
    tronics, pages 713{714, 2014.
    [15] E. ALPAYDIN. Introduction to machine learning, 2nd ed. mit press.
    [16] P. Magnusson et al. Simics: A full system simulation platform. 2002.
    [17] M. M. K. Martin et al. Multifacets general execution-driven multiprocessor simulator
    (gems).
    29
    [18] B. Jacob E. Cooper-Balis, P. Rosenfeld. Bu er-on-board memory systems. In ISCA'12,
    pages 392{403, 2012.
    [19] R. J. Rib M. R. Stan K. Skadron W. Huang, K. Sankaranarayanan. An improved block-
    based thermal model in hotspot 4.0 with granularity considerations. In Proceedings of
    the Workshop on Duplicating, Deconstructing, and Debunking, 2007.
    [20] D. Rossell J. Meng and A. K. Coskun. Exploring performance, power, and temperature
    characteristics of 3d systems with on-chip dram. In IGCC'11, pages 1-6, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE