簡易檢索 / 詳目顯示

研究生: 柯良諭
Ko, Liang-Yu
論文名稱: AS1411適配體修飾脂質體搭載anti-microRNA-155靶向治療瀰漫性大型B細胞淋巴癌
AS1411 aptamer-modified liposomes delivering anti-microRNA-155 for targeted gene therapy in diffuse large B cell lymphoma
指導教授: 莊淳宇
Chuang, Chun-Yu
陳炯東
Chen, Chiung-Tong
口試委員: 張建文
CHANG, CHIEN-WEN
趙瑞益
Chao, Jui-I
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 124
中文關鍵詞: 瀰漫大B細胞淋巴瘤microRNA-155鎖核酸硫代磷酸酯鍵AS1411適體正電脂質體
外文關鍵詞: diffuse large B cell lymphoma, microRNA-155, locked nucleic acid, phosphorothioate, AS1411 aptamer, cationic liposome
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 瀰漫性大B細胞淋巴瘤(diffuse large B cell lymphoma, DLBCL)是常見的非霍奇金淋巴瘤(non-Hodgkin lymphoma, NHL)之一,其中類活化B細胞型(activated B cell like, ABC) DLBCL對常規化療具有顯著的抗性。有研究顯示microRNA-155 (miR-155)過度表達與ABC DLBCL腫瘤過度增生以及藥物抗性有關。因此,鎖定miR-155成為一個潛在的治療策略。本研究旨在開發一種結構經過優化的anti-miR-155分子,並利用AS1411適體修飾的陽性脂質體將anti-miR-155精準遞送至ABC DLBCL細胞,以克服miRNA治療的降解和快速清除問題,評估其對腫瘤增殖、化療敏感性及多重耐藥性蛋白表達的調控效果。為提高抗miR-155分子的穩定性與抗降解能力,本研究設計鎖核酸(locked nucleic acid, LNA)修飾及硫代磷酸酯鍵(phosphorothioate, PS)的髮夾(hairpin)結構anti-miR-155 (amiR-H)。本研究亦透過AS1411適體修飾的陽性脂質體,實現anti-miR-155分子的靶向遞送,並在ABC DLBCL細胞株(SU-DHL-2)中評估其治療效果。研究結果顯示,anti-miR-155能顯著提高SU-DHL-2細胞對化療藥物(doxorubicin)處理之化療敏感性。amiR-H通過抑制miR-155上調SMAD5表達,導致SU-DHL-2細胞發生G0/G1期細胞週期停滯,亦顯著上調TP53的表達,促進cytochrome C釋放,增強其介導的細胞凋亡作用。此外,amiR-H通過提升IB的表達並抑制其磷酸化,有效阻斷NF-B轉錄活性。這些作用進一步抑制B細胞分化,並下調多重耐藥性基因ABCG2與ABCB1表達。本研究證實使用amiR-H型修飾的抗miR-155分子結合AS1411修飾脂質體的傳遞系統,可有效抑制ABC DLBCL細胞增生、誘導腫瘤細胞凋亡,能促進化療敏感性,從而抑制腫瘤進展。


    Diffuse large B cell lymphoma (DLBCL) is one of the most common types of non-Hodgkin lymphoma (NHL), with the activated B cell-like (ABC) subtype of DLBCL presenting significant resistance to conventional chemotherapy. Previous studies indicated that overexpression of microRNA-155 (miR-155) is associated with tumor proliferation and drug resistance, exacerbating disease progression in ABC DLBCL. Targeting miR-155 has emerged as a potential therapeutic strategy. This study aims to develop an optimized anti-miR-155 molecule and utilize AS1411 aptamer-modified cationic liposomes to precisely deliver anti-miR-155 to ABC DLBCL cells, addressing the challenges of degradation and rapid clearance in miRNA therapy while evaluating its effects on tumor proliferation, chemotherapy sensitivity, and multidrug resistance protein expression. To enhance stability, this study designed a hairpin structure anti-miR-155 (amiR-H) incorporating locked nucleic acid (LNA) modifications and phosphorothioate (PS) linkages. AS1411-modified liposomes also employed for targeted delivery of anti-miR-155, and evaluated its therapeutic efficacy in ABC DLBCL cell line (SU-DHL-2). The results of this study indicated that anti-miR-155 significantly enhanced the cytotoxic effects of doxorubicin treatment in SU-DHL-2 cells. amiR-H upregulated SMAD5 expression by inhibiting miR-155, leading to G0/G1 phase cell cycle arrest in SU-DHL-2 cells, and also significantly increased TP53 expression, promoting cytochrome C release and enhancing apoptosis. Additionally, amiR-H effectively blocked NF-κB transcriptional activity by upregulating IκBα expression and inhibiting its phosphorylation. These effects further suppressed B-cell differentiation and downregulated the expression of multidrug resistance genes ABCG2 and ABCB1. This study confirmed that the delivery system combining amiR-H-modified anti-miR-155 molecules with AS1411-modified liposomes can effectively inhibit cell proliferation and induce tumor cell apoptosis, suggesting enhanced chemotherapy sensitivity and consequent suppression of tumor progression in ABC DLBCL.

    中文摘要 2 Abstract 3 Content 5 List of Abbreviation 8 List of Figures 10 List of Tables 12 1. Introduction 13 1.1 Lymphoma 15 1.1.1 Diffuse large B cell lymphoma 16 1.1.2 Aberrant gene expression in ABC DLBCL 17 1.2. MicroRNAs 20 1.2.1 Expression of miR-155 in ABC DLBCL 22 1.2.2 miR-155 in the pathogenesis of ABC DLBCL 22 1.2.3 Targeted therapy against miR-155 presents a potential approach. 24 1.3 RNA-based therapeutics 25 1.3.1 Barriers of RNA-based therapeutics 26 1.3.2 Locked nucleic acid 27 1.3.3 Phosphorothioate bonds 28 1.4 Synthetic vehicles for enhanced RNA delivery 29 1.4.1 Utilizing liposomes as a carrier for the delivery of nucleic acid-based therapeutics 31 1.4.2 Nucleolin-Targeting AS1411 aptamer for improving delivery efficiency 32 2. Purpose of this study 34 3. Materials and Methods 36 3.1 Potential target genes of miR-155 regulation 36 3.2 Cell Culture 36 3.3 Design and synthesis of oligonucleotides 37 3.4 Quantitative real-time polymerase chain reaction (QPCR) 37 3.5 QPCR of miRNA 41 3.6 Cell viability assay 42 3.7 Cell cycle analysis 42 3.8 Transfection of anti-miR-155 oligonucleotides 43 3.9 Western blot assay 43 3.10 Preparation of anti-miR-155 liposome complexes 45 3.11 Conjugation of AS1411 to the surface of liposomes 46 3.12 The N/P ratio of anti-miR-155 liposome complexes 47 3.13 Gel retardation electrophoresis of the liposomes/anti-miR-155 complex formation 47 3.14 Determination of the liposomes/anti-miR-155 complex in cell 48 3.15 Fluorescent imaging of the liposomes/anti-miR-155 complex 48 3.16 Cathepsin B activity 49 3.17 LC-MS/MS 49 3.18 Statistical analysis 50 4. Results 51 4.1 Identification of potential target genes of miR-155 regulation 51 4.2 Modifications of anti-miR-155 oligonucleotide 54 4.3 Anti-miR-155 attenuated NF-κB signaling through IκBα 58 4.4 Anti-miR-155 promoted cell cycle arrest via SMAD5 62 4.5 Anti-miR-155 resensitized SU-DHL-2 cells to chemotherapy 64 4.6 Characterization of the AS1411 aptamer modified DOPE/DC-Chol/Mal Liposomes 67 4.7 Efficiency of loading and delivery of the liposomes/anti-miR-155 complex 74 4.8 Liposomes/anti-miR-155 complex induced apoptosis 79 5. Discussion 83 5.1 Anti-miR-155 increased TP53 activity and attenuated NF-κB activation for modulating ABC like DLBCL cells 84 5.2 Anti-miR-155 induced G0/G1 cell cycle arrest through SMAD5 and TP53 for tumor suppression in ABC like DLBCL cells 87 5.3 Anti-miR-155 can resensitize ABC like DLBCL cells to chemotherapy through downregulation of multi-drug resistance 89 5.4 Liposome-mediated delivery of anti-miR-155 overcomed intracellular barriers in ABC like DLBCL cells 90 5.5 Structural modification of anti-miR-155 enhanced the therapeutic efficacy in ABC like DLBCL cells 92 6. Conclusion 98 7. References 99 8. Supplements 106

    Adly Sadik N, Ahmed Rashed L, Ahmed Abd-El Mawla M. Circulating miR-155 and JAK2/STAT3 Axis in Acute Ischemic Stroke Patients and Its Relation to Post-Ischemic Inflammation and Associated Ischemic Stroke Risk Factors. Int J Gen Med. 2021;14:1469-1484. doi: 10.2147/IJGM.S295939
    American Cancer Society. Cancer Facts & Figures 2023. Atlanta: American Cancer Society 2023
    Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. doi:10.1186/1556-276X-8-102
    Alsaadi M, Khan MY, Dalhat MH, et al. Dysregulation of miRNAs in DLBCL: Causative Factor for Pathogenesis, Diagnosis and Prognosis. Diagnostics (Basel). 2021;11(10):1739. doi:10.3390/diagnostics11101739
    Arthur SE, Jiang A, Grande BM, et al. Genome-wide discovery of somatic regulatory variants in diffuse large B-cell lymphoma. Nat Commun. 2018;9(1):4001. doi:10.1038/s41467-018-06354-3
    Babar IA, Cheng CJ, Booth CJ, et al. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci U S A. 2012;109(26):E1695-E1704. doi:10.1073/pnas.1201516109
    Bai D, Ueno L, Vogt PK. Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. Int J Cancer. 2009;125(12):2863-2870. doi:10.1002/ijc.24748
    Bal E, Kumar R, Hadigol M, et al. Super-enhancer hypermutation alters oncogene expression in B cell lymphoma. Nature. 2022;607(7920):808-815. doi:10.1038/s41586-022-04906-8
    Bartolucci D, Pession A, Hrelia P, Tonelli R. Precision Anti-Cancer Medicines by Oligonucleotide Therapeutics in Clinical Research Targeting Undruggable Proteins and Non-Coding RNAs. Pharmaceutics. 2022;14(7):1453. doi:10.3390/pharmaceutics14071453
    Boldin MP, Baltimore D. MicroRNAs, new effectors and regulators of NF-κB. Immunol Rev. 2012;246(1):205-220. doi:10.1111/j.1600-065X.2011.01089.x
    Boltežar L, Prevodnik VK, Perme MP, Gašljević G, Novaković BJ. Comparison of the algorithms classifying the ABC and GCB subtypes in diffuse large B-cell lymphoma. Oncol Lett. 2018;15(5):6903-6912. doi:10.3892/ol.2018.8243
    Bouchie A. First microRNA mimic enters clinic. Nat Biotechnol. 2013 31(7):577. doi:10.1038/nbt0713-577
    Braasch DA, Corey DR. Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol. 2001;8(1):1-7. doi:10.1016/s1074-5521(00)00058-2
    Bäckström E, Bonetti A, Johnsson P, et al. Tissue pharmacokinetics of antisense oligonucleotides. Mol Ther Nucleic Acids. 2024;35(1):102133. doi:10.1016/j.omtn.2024.102133
    Cerqueira L, Azevedo NF, Almeida C, Jardim T, Keevil CW, Vieira MJ. DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH). Int J Mol Sci. 2008;9(10):1944-1960. doi:10.3390/ijms9101944
    Chan JY, Somasundaram N, Grigoropoulos N, et al. Evolving therapeutic landscape of diffuse large B-cell lymphoma: challenges and aspirations. Discov Oncol. 2023;14(1):132. doi:10.1007/s12672-023-00754-8
    Chen J, Yu Z, Chen H, Gao J, Liang W. Transfection efficiency and intracellular fate of polycation liposomes combined with protamine. Biomaterials. 2011;32(5):1412-1418. doi:10.1016/j.biomaterials.2010.09.074
    Chen LF, Greene WC. Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol. 2004;5(5):392-401. doi:10.1038/nrm1368
    Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127-D131. doi:10.1093/nar/gkz757
    Chen Y, Wu Z, Wang L, et al. Targeting nucleolin improves sensitivity to chemotherapy in acute lymphoblastic leukemia. Cell Oncol (Dordr). 2023;46(6):1709-1724. doi:10.1007/s13402-023-00837-2
    Chen B, Dragomir MP, Yang C, Li Q, Horst D, Calin GA. Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther. 2022;7(1):121. doi:10.1038/s41392-022-00975-3
    Clavé G, Reverte M, Vasseur JJ, Smietana M. Modified internucleoside linkages for nuclease-resistant oligonucleotides. RSC Chem Biol. 2020;2(1):94-150. doi:10.1039/d0cb00136h
    Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A. 2006;103(18):7024-7029. doi:10.1073/pnas.0602266103
    Crooke ST, Vickers TA, Liang XH. Phosphorothioate modified oligonucleotide-protein interactions. Nucleic Acids Res. 2020;48(10):5235-5253. doi:10.1093/nar/gkaa299
    Dai Y, Rahmani M, Dent P, Grant S. Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-kappaB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activation. Mol Cell Biol. 2005;25(13):5429-5444. doi:10.1128/MCB.25.13.5429-5444.2005
    Damase TR, Sukhovershin R, Boada C, Taraballi F, Pettigrew RI, Cooke JP. The Limitless Future of RNA Therapeutics. Front Bioeng Biotechnol. 2021;9:628137. doi:10.3389/fbioe.2021.628137
    Das K, Rao LVM. The Role of microRNAs in Inflammation. Int J Mol Sci. 2022;23(24):15479. doi:10.3390/ijms232415479
    Das U, Bhuniya A, Roy AK, Gmeiner WH, Ghosh S. Hairpin Oligonucleotide Can Functionalize Gold Nanorods for in Vivo Application Delivering Cytotoxic Nucleotides and Curcumin: A Comprehensive Study in Combination with Near-Infrared Laser. ACS Omega. 2020;5(44):28463-28474. doi:10.1021/acsomega.0c02288
    DeVos SL, Miller TM. Antisense oligonucleotides: treating neurodegeneration at the level of RNA. Neurotherapeutics. 2013;10(3):486-497. doi:10.1007/s13311-013-0194-5
    Dioguardi M, Spirito F, Sovereto D, et al. Biological Prognostic Value of miR-155 for Survival Outcome in Head and Neck Squamous Cell Carcinomas: Systematic Review, Meta-Analysis and Trial Sequential Analysis. Biology (Basel). 2022;11(5):651. doi:10.3390/biology11050651
    Dowdy SF, Setten RL, Cui XS, Jadhav SG. Delivery of RNA Therapeutics: The Great Endosomal Escape!. Nucleic Acid Ther. 2022;32(5):361-368. doi:10.1089/nat.2022.0004
    Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017;35(3):222-229. doi:10.1038/nbt.3802
    Due H, Schönherz AA, Ryø L, et al. MicroRNA-155 controls vincristine sensitivity and predicts superior clinical outcome in diffuse large B-cell lymphoma. Blood Adv. 2019;3(7):1185-1196. doi:10.1182/bloodadvances.2018029660
    Düzgüneş N, Faneca H, Lima MC. Methods to monitor liposome fusion, permeability, and interaction with cells. Methods Mol Biol. 2010;606:209-232. doi:10.1007/978-1-60761-447-0_16
    Eis PS, Tam W, Sun L, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A. 2005;102(10):3627-3632. doi:10.1073/pnas.0500613102
    Ejigah V, Owoseni O, Bataille-Backer P, Ogundipe OD, Fisusi FA, Adesina SK. Approaches to Improve Macromolecule and Nanoparticle Accumulation in the Tumor Microenvironment by the Enhanced Permeability and Retention Effect. Polymers (Basel). 2022;14(13):2601. doi:10.3390/polym14132601
    El-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release. 2004;94(1):1-14. doi:10.1016/j.jconrel.2003.09.013
    Eluard B, Nuan-Aliman S, Faumont N, et al. The alternative RelB NF-κB subunit is a novel critical player in diffuse large B-cell lymphoma. Blood. 2022;139(3):384-398. doi:10.1182/blood.2020010039
    Eng VV, Wemyss MA, Pearson JS. The diverse roles of RIP kinases in host-pathogen interactions. Semin Cell Dev Biol. 2021;109:125-143. doi:10.1016/j.semcdb.2020.08.005
    Faraoni I, Antonetti FR, Cardone J, Bonmassar E. miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta. 2009;1792(6):497-505. doi:10.1016/j.bbadis.2009.02.013
    Ferenczi A, Chew YP, Kroll E, von Koppenfels C, Hudson A, Molnar A. Mechanistic and genetic basis of single-strand templated repair at Cas12a-induced DNA breaks in Chlamydomonas reinhardtii. Nat Commun. 2021;12(1):6751. doi:10.1038/s41467-021-27004-1
    Fischer M, Grossmann P, Padi M, DeCaprio JA. Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks. Nucleic Acids Res. 2016;44(13):6070-86. doi:10.1093/nar/gkw523
    Flynn LL, Li R, Pitout IL, et al. Single Stranded Fully Modified-Phosphorothioate Oligonucleotides can Induce Structured Nuclear Inclusions, Alter Nuclear Protein Localization and Disturb the Transcriptome In Vitro. Front Genet. 2022;13:791416. doi:10.3389/fgene.2022.791416
    Fuertes T, Ramiro AR, de Yebenes VG. miRNA-Based Therapies in B Cell Non-Hodgkin Lymphoma. Trends Immunol. 2020;41(10):932-947. doi:10.1016/j.it.2020.08.006
    Gao H, Qian J, Cao S, et al. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials. 2012;33(20):5115-5123. doi:10.1016/j.biomaterials.2012.03.058
    Gao X, Zhou J, Wang J, Dong X, Chang Y, Jin Y. Mechanism of exosomal miR-155 derived from bone marrow mesenchymal stem cells on stemness maintenance and drug resistance in myeloma cells. J Orthop Surg Res. 2021;16(1):637. doi:10.1186/s13018-021-02793-9
    Taylor SC, Nadeau K, Abbasi M, Lachance C, Nguyen M, Fenrich J. The Ultimate qPCR Experiment: Producing Publication Quality, Reproducible Data the First Time. Trends Biotechnol. 2019;37(7):761-774. doi:10.1016/j.tibtech.2018.12.002
    Gary DJ, Min J, Kim Y, Park K, Won YY. The effect of N/P ratio on the in vitro and in vivo interaction properties of PEGylated poly[2-(dimethylamino)ethyl methacrylate]-based siRNA complexes. Macromol Biosci. 2013;13(8):1059-1071. doi:10.1002/mabi.201300046
    Gaus HJ, Gupta R, Chappell AE, Østergaard ME, Swayze EE, Seth PP. Characterization of the interactions of chemically-modified therapeutic nucleic acids with plasma proteins using a fluorescence polarization assay. Nucleic Acids Res. 2019 47(3):1110-1122. doi:10.1093/nar/gky1260
    Gotora PT, van der Sluis R, Williams ME. HIV-1 Tat amino acid residues that influence Tat-TAR binding affinity: a scoping review. BMC Infect Dis. 2023 23(1):164. 2023. doi:10.1186/s12879-023-08123-0
    Gottwein E, Mukherjee N, Sachse C. A viral microRNA functions as an orthologue of cellular miR-155. Nature. 2007;450(7172):1096-1099. doi:10.1038/nature05992
    Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A. 2008;105(33):11613-8. doi: 10.1073/pnas.0801763105
    Gregory GL, Copple IM. Modulating the expression of tumor suppressor genes using activating oligonucleotide technologies as a therapeutic approach in cancer. Mol Ther Nucleic Acids. 2022;31:211-223. doi:10.1016/j.omtn.2022.12.016
    Guarneri C, Bevelacqua V, Polesel J, Falzone L, Cannavò PS, Spandidos DA, Malaponte G, Libra M. NF‑κB inhibition is associated with OPN/MMP‑9 downregulation in cutaneous melanoma. Oncol Rep. 2017;37(2):737-746. doi:10.3892/or.2017.5362
    Guimaraes G, Yuan L, Li P. Antisense Oligonucleotide In Vitro Protein Binding Determination in Plasma, Brain, and Cerebral Spinal Fluid Using Hybridization LC-MS/MS. Drug Metab Dispos. 2022;50(3):268-276. doi:10.1124/dmd.121.000751
    Guo J, Gao X, Su L. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials. 2011;32(31):8010-8020. doi:10.1016/j.biomaterials.2011.07.004
    Hagedorn PH, Persson R, Funder ED, Albæk N, Diemer SL, Hansen DJ, Møller MR, Papargyri N, Christiansen H, Hansen BR, Hansen HF, Jensen MA, Koch T. Locked nucleic acid: modality, diversity, and drug discovery. Drug Discov Today. 2018;23(1):101-114. doi: 10.1016/j.drudis.2017.09.018
    Hauschild AC, Pastrello C, Ekaputeri GKA, Bethune-Waddell D, Abovsky M, Ahmed Z, Kotlyar M, Lu R, Jurisica I. MirDIP 5.2: tissue context annotation and novel microRNA curation. Nucleic Acids Res. 2023;51(D1):D217-D225. doi:10.1093/nar/gkac1070
    Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008 132(3):344-62. doi:10.1016/j.cell.2008.01.020
    He C, Migawa MT, Chen K, et al. High-resolution visualization and quantification of nucleic acid-based therapeutics in cells and tissues using Nanoscale secondary ion mass spectrometry (NanoSIMS). Nucleic Acids Res. 2021;49(1):1-14. doi:10.1093/nar/gkaa1112
    He X, Li Y, Deng B, et al. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif. 2022;55(9):e13275. doi:10.1111/cpr.13275
    Herkt M, Thum T. Pharmacokinetics and Proceedings in Clinical Application of Nucleic Acid Therapeutics. Mol Ther. 2021;29(2):521-539. doi:10.1016/j.ymthe.2020.11.008
    Hilton LK, Scott DW, Morin RD. Biological heterogeneity in diffuse large B-cell lymphoma. Semin Hematol. 2023;60(5):267-276. doi:10.1053/j.seminhematol.2023.11.006
    Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078-1094. doi:10.1038/s41578-021-00358-0
    Hoy SM. Patisiran: First Global Approval. Drugs. 2018;78(15):1625-1631. doi:10.1007/s40265-018-0983-6
    Hu J, Huang S, Liu X, Zhang Y, Wei S, Hu X. miR-155: An Important Role in Inflammation Response. J Immunol Res. 2022;2022:7437281. doi:10.1155/2022/7437281
    Huang HY, Lin YC, Cui S, et al. miRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2022;50(D1):D222-D230. doi:10.1093/nar/gkab1079
    Huang WT, Kuo SH, Kuo YC, Lin CW. miR-155-regulated mTOR and Toll-like receptor 5 in gastric diffuse large B-cell lymphoma. Cancer Med. 2022;11(3):555-570. doi:10.1002/cam4.4466
    Huang X, Shen Y, Liu M. Quantitative proteomics reveals that miR-155 regulates the PI3K-AKT pathway in diffuse large B-cell lymphoma. Am J Pathol. 2012;181(1):26-33. doi:10.1016/j.ajpath.2012.03.013
    Huse K, Bakkebø M, Wälchli S, Oksvold MP, Hilden VI, Forfang L, Bredahl ML, Liestøl K, Alizadeh AA, Smeland EB, Myklebust JH. Role of Smad proteins in resistance to BMP-induced growth inhibition in B-cell lymphoma. PLoS One. 2012;7(10):e46117. doi:10.1371/journal.pone.0046117
    Iqbal J, Shen Y, Huang X. Global microRNA expression profiling uncovers molecular markers for classification and prognosis in aggressive B-cell lymphoma. Blood. 2015;125(7):1137-1145. doi:10.1182/blood-2014-04-566778
    Irawan C, Iskandar M, Harahap AS, Rumende CM, Ham MF. MUM1 Expression versus Hans Algorithm to Predict Prognosis in Indonesian Diffuse Large B-Cell Lymphoma Patients Receiving R-CHOP. Cancer Manag Res. 2022;14:925-935. doi:10.2147/CMAR.S345745
    Ireson CR, Kelland LR. Discovery and development of anticancer aptamers. Mol Cancer Ther. 2006;5(12):2957-2962. doi:10.1158/1535-7163.MCT-06-0172
    Jain N, Zhu H, Khashab T. Targeting nucleolin for better survival in diffuse large B-cell lymphoma. Leukemia. 2018;32(3):663-674. doi:10.1038/leu.2017.215
    Janssen HL, Reesink HW, Lawitz EJ. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685-1694. doi:10.1056/NEJMoa1209026
    Jiang S, Zhang HW, Lu MH. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 2010;70(8):3119-3127. doi:10.1158/0008-5472.CAN-09-4250
    Jiang X, Chen C, Gu S, Zhang Z. Regulation of ABCG2 by nuclear factor kappa B affects the sensitivity of human lung adenocarcinoma A549 cells to arsenic trioxide. Environ Toxicol Pharmacol. 2018;57:141-150. doi:10.1016/j.etap.2017.12.011
    Jo SJ, Chae SU, Lee CB, Bae SK. Clinical Pharmacokinetics of Approved RNA Therapeutics. Int J Mol Sci. 2023;24(1):746. doi:10.3390/ijms24010746
    Jost PJ, Ruland J. Aberrant NF-kappaB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood. 2007;109(7):2700-2707. doi:10.1182/blood-2006-07-025809
    Juliano RL. Chemical Manipulation of the Endosome Trafficking Machinery: Implications for Oligonucleotide Delivery. Biomedicines. 2021;9(5):512. doi:10.3390/biomedicines9050512
    Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C Mater Biol Appl. 2019;98:1252-1276. doi:10.1016/j.msec.2019.01.066
    Kawaguchi D, Kodama A, Abe N, et al. Phosphorothioate Modification of mRNA Accelerates the Rate of Translation Initiation to Provide More Efficient Protein Synthesis. Angew Chem Int Ed Engl. 2020;59(40):17403-17407. doi:10.1002/anie.202007111
    Kazmi F, Yerino P, McCoy C, Parkinson A, Buckley DB, Ogilvie BW. An Assessment of the In Vitro Inhibition of Cytochrome P450 Enzymes, UDP-Glucuronosyltransferases, and Transporters by Phosphodiester- or Phosphorothioate-Linked Oligonucleotides. Drug Metab Dispos. 2018;46(8):1066-1074. doi:10.1124/dmd.118.081729.
    Kern F, Aparicio-Puerta E, Li Y, Fehlmann T, Kehl T, Wagner V, Ray K, Ludwig N, Lenhof HP, Meese E, Keller A. miRTargetLink 2.0-interactive miRNA target gene and target pathway networks. Nucleic Acids Res. 2021;49(W1):W409-W416. doi:10.1093/nar/gkab297
    Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol. 2017;35(3):238-248. doi:10.1038/nbt.3765
    Kim JE, Singh RR, Cho-Vega JH, Drakos E, Davuluri Y, Khokhar FA, Fayad L, Medeiros LJ, Vega F. Sonic hedgehog signaling proteins and ATP-binding cassette G2 are aberrantly expressed in diffuse large B-cell lymphoma. Mod Pathol. 2009;22(10):1312-20. doi:10.1038/modpathol.2009.98
    Kim KH, Sederstrom JM. Assaying Cell Cycle Status Using Flow Cytometry. Curr Protoc Mol Biol. 2015;111:28.6.1-28.6.11. doi:10.1002/0471142727.mb2806s111
    Ko BS, Chen LJ, Huang HH, et al. Subtype-specific epidemiology of lymphoid malignancies in Taiwan compared to Japan and the United States, 2002-2012. Cancer Med. 2018;7(11):5820-5831. doi:10.1002/cam4.1762
    Koumpis E, Georgoulis V, Papathanasiou K, et al. The Role of microRNA-155 as a Biomarker in Diffuse Large B-Cell Lymphoma. Biomedicines. 2024;12(12):2658. doi:10.3390/biomedicines12122658
    Kramer MF. Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol. 2011;Chapter 15:Unit15.10-15.10. doi:10.1002/0471142727.mb1510s95
    Lechanteur A, Sanna V, Duchemin A, Evrard B, Mottet D, Piel G. Cationic Liposomes Carrying siRNA: Impact of Lipid Composition on Physicochemical Properties, Cytotoxicity and Endosomal Escape. Nanomaterials (Basel). 2018;8(5):270. doi:10.3390/nano8050270
    Lee JH, Oh HK, Choi BS, et al. Genome editing-mediated knock-in of therapeutic genes ameliorates the disease phenotype in a model of hemophilia. Mol Ther Nucleic Acids. 2022;29:551-562. doi:10.1016/j.omtn.2022.08.002
    Li L, Hou J, Liu X, et al. Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials. 2014;35(12):3840-3850. doi:10.1016/j.biomaterials.2014.01.019
    Li Y, Duo Y, Bi J, Zeng X, Mei L, Bao S, He L, Shan A, Zhang Y, Yu X. Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. Int J Nanomedicine. 2018;13:1241-1256. doi:10.2147/IJN.S158290.
    Li Y, Zhang L, Dong Z, Xu H, Yan L, Wang W, Yang Q, Chen C. MicroRNA-155-5p promotes tumor progression and contributes to paclitaxel resistance via TP53INP1 in human breast cancer. Pathol Res Pract. 2021;220:153405. doi:10.1016/j.prp.2021.153405
    Lin Y, Wong K, Calame K. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science. 1997;276(5312):596-599. doi:10.1126/science.276.5312.596
    Linnstaedt SD, Gottwein E, Skalsky RL, Luftig MA, Cullen BR. Virally induced cellular microRNA miR-155 plays a key role in B-cell immortalization by Epstein-Barr virus. J Virol. 2010;84(22):11670-11678. doi:10.1128/JVI.01248-10
    Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337-41. doi:10.1016/j.ddtec.2004.11.007
    Liu C, Zhang L, Zhu W. Barriers and Strategies of Cationic Liposomes for Cancer Gene Therapy. Mol Ther Methods Clin Dev. 2020;18:751-764. doi:10.1016/j.omtm.2020.07.015
    Liu D, Mori A, Huang L. Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim Biophys Acta. 1992;1104(1):95-101. doi:10.1016/0005-2736(92)90136-a.
    Lu YJ, Hsu HL, Lan YH, Chen JP. Thermosensitive Cationic Magnetic Liposomes for Thermoresponsive Delivery of CPT-11 and SLP2 shRNA in Glioblastoma Treatment. Pharmaceutics. 2023;15(4):1169. doi:10.3390/pharmaceutics15041169
    Lv L, An X, Li H, Ma L. Effect of miR-155 knockdown on the reversal of doxorubicin resistance in human lung cancer A549/dox cells. Oncol Lett. 2016;11(2):1161-1166. doi:10.3892/ol.2015.3995
    Ma X, Xiang F, Pei Z, Miao J, Wu P, Song X, Li Y, Zhang Y. Circ-Smad5 retards the G1/S transition of cell cycle via inhibiting the activity of wnt/lef/cyclind1 signaling in JB6 cells. Genes Dis. 2020;8(3):364-372. doi:10.1016/j.gendis.2020.01.001
    Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics. 2010;11(7):537-61. doi:10.2174/138920210793175895
    Mahdavi Anari SR, Kheirkhah B, Amini K, Roozafzai F. Expression of MicroRNA-155 in Patients with Non-Hodgkin Lymphoma, Coronavirus Disease 2019, or Both: A Cross-Sectional Study. Iran J Med Sci. 2023;48(1):26-34. doi:10.30476/IJMS.2022.91669.2282
    Garg M, Takyar J, Dhawan A, Saggu G, Agrawal N, Hall A, Raut M, Ryland KE. Diffuse large B-cell lymphoma (DLBCL): a structured literature review of the epidemiology, treatment guidelines, and real-world treatment patterns. Blood. 2022;140:12106-12107. doi:10.1182/blood-2022-169045
    Mahesh G, Biswas R. MicroRNA-155: A Master Regulator of Inflammation. J Interferon Cytokine Res. 2019;39(6):321-330. doi:10.1089/jir.2018.0155
    Mahmood T, Yang PC. Western blot: technique, theory, and trouble shooting. N Am J Med Sci. 2012;4(9):429-434. doi:10.4103/1947-2714.100998
    Malik S, Lim J, Slack FJ, Braddock DT, Bahal R. Next generation miRNA inhibition using short anti-seed PNAs encapsulated in PLGA nanoparticles. J Control Release. 2020;327:406-419. doi:10.1016/j.jconrel.2020.08.026
    Mann M, Mehta A, Zhao JL, Lee K, Marinov GK, Garcia-Flores Y, Lu LF, Rudensky AY, Baltimore D. Author Correction: An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nat Commun. 2018;9(1):3338. doi:10.1038/s41467-018-05720-5
    Martin M, Hartley A, Jin J, et al. Phosphorylation of NF-κB in Cancer. IntechOpen. 2019. doi:10.5772/intechopen.83650
    Meade BR, Gogoi K, Hamil AS, Palm-Apergi C, van den Berg A, Hagopian JC, Springer AD, Eguchi A, Kacsinta AD, Dowdy CF, Presente A, Lönn P, Kaulich M, Yoshioka N, Gros E, Cui XS, Dowdy SF. Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications. Nat Biotechnol. 2014;32(12):1256-61. doi:10.1038/nbt.3078
    Mo W, Zhang JT. Human ABCG2: structure, function, and its role in multidrug resistance. Int J Biochem Mol Biol. 2012;3(1):1-27.
    Morin RD, Arthur SE, Hodson DJ. Molecular profiling in diffuse large B-cell lymphoma: why so many types of subtypes? Br J Haematol. 2022;196(4):814-829. doi:10.1111/bjh.17811
    Morita Y, Leslie M, Kameyama H, Volk DE, Tanaka T. Aptamer Therapeutics in Cancer: Current and Future. Cancers (Basel). 2018;10(3):80. doi:10.3390/cancers10030080
    Naicker K, Ariatti M, Singh M. PEGylated galactosylated cationic liposomes for hepatocytic gene delivery. Colloids Surf B Biointerfaces. 2014;122:482-490. doi:10.1016/j.colsurfb.2014.07.010
    Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front Bioeng Biotechnol. 2021;9:705886. doi:10.3389/fbioe.2021.705886
    Narwade M, Shaikh A, Gajbhiye KR, Kesharwani P, Gajbhiye V. Advanced cancer targeting using aptamer functionalized nanocarriers for site-specific cargo delivery. Biomater Res. 2023;27(1):42. doi:10.1186/s40824-023-00365-y
    Nasrollahzadeh A, Momeny M, Bashash D, Yousefi H, Mousavi SA, Ghaffari SH. Blockade of Nuclear Factor-Κb (NF-Κb) Pathway Using Bay 11-7082 Enhances Arsenic Trioxide-Induced Antiproliferative Activity in U87 Glioblastoma Cells. Rep Biochem Mol Biol. 2022;10(4):602-613. doi:10.52547/rbmb.10.4.602
    Nowakowski GS, Czuczman MS. ABC, GCB, and Double-Hit Diffuse Large B-Cell Lymphoma: Does Subtype Make a Difference in Therapy Selection?. Am Soc Clin Oncol Educ Book. 2015;e449-e457. doi:10.14694/EdBook_AM.2015.35.e449
    Noé V, Aubets E, Félix AJ, Ciudad CJ. Nucleic acids therapeutics using PolyPurine Reverse Hoogsteen hairpins. Biochem Pharmacol. 2021;189:114371. doi:10.1016/j.bcp.2020.114371
    Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022;8(5):e09394. doi:10.1016/j.heliyon.2022.e09394
    O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne). 2018;9:402. doi:10.3389/fendo.2018.00402
    Onaindia A, Santiago-Quispe N, Iglesias-Martinez E, Romero-Abrio C. Molecular Update and Evolving Classification of Large B-Cell Lymphoma. Cancers (Basel). 2021;13(13):3352. doi:10.3390/cancers13133352
    Otmani K, Rouas R, Berehab M, Lewalle P. The regulatory mechanisms of oncomiRs in cancer. Biomed Pharmacother. 2024;171:116165. doi:10.1016/j.biopha.2024.116165
    Owczarzy R, You Y, Groth CL, Tataurov AV. Stability and mismatch discrimination of locked nucleic acid-DNA duplexes. Biochemistry. 2011;50(43):9352-67. doi:10.1021/bi200904e
    Pal S, Bhattacharjee A, Ali A, Mandal NC, Mandal SC, Pal M. Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. J Inflamm (Lond). 2014;11:23. doi:10.1186/1476-9255-11-23
    Papargyri N, Pontoppidan M, Andersen MR, Koch T, Hagedorn PH. Chemical Diversity of Locked Nucleic Acid-Modified Antisense Oligonucleotides Allows Optimization of Pharmaceutical Properties. Mol Ther Nucleic Acids. 2020;19:706-717. doi:10.1016/j.omtn.2019.12.011
    Pardali K, Kowanetz M, Heldin CH, Moustakas A. Smad pathway-specific transcriptional regulation of the cell cycle inhibitor p21(WAF1/Cip1). J Cell Physiol. 2005;204(1):260-72. doi:10.1002/jcp.20304
    Pashangzadeh S, Motallebnezhad M, Vafashoar F, Khalvandi A, Mojtabavi N. Implications the Role of miR-155 in the Pathogenesis of Autoimmune Diseases. Front Immunol. 2021;12:669382. doi:10.3389/fimmu.2021.669382
    Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23(5):265-280. doi:10.1038/s41576-021-00439-4
    Powell D, Chandra S, Dodson K. Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer. Eur J Pharm Biopharm. 2017;114:108-118. doi:10.1016/j.ejpb.2017.01.011
    Powell D, Chandra S, Dodson K, et al. Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer. Eur J Pharm Biopharm. 2017;114:108-118. doi:10.1016/j.ejpb.2017.01.011
    Pulkkinen KH, Ylä-Herttuala S, Levonen AL. Heme oxygenase 1 is induced by miR-155 via reduced BACH1 translation in endothelial cells. Free Radic Biol Med. 2011;51(11):2124-2131. doi:10.1016/j.freeradbiomed.2011.09.014
    Raguraman P, Wang T, Ma L, Jørgensen PT, Wengel J, Veedu RN. Alpha-l-Locked Nucleic Acid-Modified Antisense Oligonucleotides Induce Efficient Splice Modulation In Vitro. Int J Mol Sci. 2020;21(7):2434. doi:10.3390/ijms21072434
    Rai D, Karanti S, Jung I, Dahia PL, Aguiar RC. Coordinated expression of microRNA-155 and predicted target genes in diffuse large B-cell lymphoma. Cancer Genet Cytogenet. 2008;181(1):8-15. doi:10.1016/j.cancergencyto.2007.10.008
    Rai D, Kim SW, McKeller MR, Dahia PL, Aguiar RC. Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis. Proc Natl Acad Sci U S A. 2010;107(7):3111-6. doi:10.1073/pnas.0910667107
    Rayamajhi S, Marchitto J, Nguyen TDT, Marasini R, Celia C, Aryal S. pH-responsive cationic liposome for endosomal escape mediated drug delivery. Colloids Surf B Biointerfaces. 2020;188:110804. doi:10.1016/j.colsurfb.2020.110804
    Refaat H, Naguib YW, Elsayed MMA, Sarhan HAA, Alaaeldin E. Modified Spraying Technique and Response Surface Methodology for the Preparation and Optimization of Propolis Liposomes of Enhanced Anti-Proliferative Activity against Human Melanoma Cell Line A375. Pharmaceutics. 2019;11(11):558. doi:10.3390/pharmaceutics11110558
    Rio DC, Ares M Jr, Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. 2010;2010(6):pdb.prot5439. doi:10.1101/pdb.prot5439
    Riss TL, Moravec RA, Niles AL. Cell Viability Assays. 2016. In: Markossian S, Grossman A, Brimacombe K. Assay Guidance Manual. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences 2004. Available from: https://www.ncbi.nlm.nih.gov/books/NBK144065/
    Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673-694. doi:10.1038/s41573-020-0075-7
    Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673-694. doi:10.1038/s41573-020-0075-7
    Rommasi F, Esfandiari N. Liposomal Nanomedicine: Applications for Drug Delivery in Cancer Therapy. Nanoscale Res Lett. 2021;16(1):95. doi:10.1186/s11671-021-03553-8
    Roschewski M, Phelan JD, Wilson WH. Molecular Classification and Treatment of Diffuse Large B-Cell Lymphoma and Primary Mediastinal B-Cell Lymphoma. Cancer J. 2020;26(3):195-205. doi:10.1097/PPO.0000000000000450
    Ruiz-Blázquez P, Pistorio V, Fernández-Fernández M, Moles A. The multifaceted role of cathepsins in liver disease. J Hepatol. 2021;75(5):1192-1202. doi:10.1016/j.jhep.2021.06.031
    Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev. 2023;75(5):815-853. doi:10.1124/pharmrev.120.000025
    Scott LJ. Givosiran: First Approval. Drugs. 2020;80(3):335-339. doi:10.1007/s40265-020-01269-0
    Sergeeva OV, Shcherbinina EY, Shomron N, Zatsepin TS. Modulation of RNA Splicing by Oligonucleotides: Mechanisms of Action and Therapeutic Implications. Nucleic Acid Ther. 2022;32(3):123-138. doi:10.1089/nat.2021.0067
    Shen S, Callaghan D, Juzwik C, Xiong H, Huang P, Zhang W. ABCG2 reduces ROS-mediated toxicity and inflammation: a potential role in Alzheimer's disease. J Neurochem. 2010;114(6):1590-604. doi:10.1111/j.1471-4159.2010.06887.x
    Shi Y, Ding D, Qu R, Tang Y, Hao S. Non-Coding RNAs in Diffuse Large B-Cell Lymphoma. Onco Targets Ther. 2020;13:12097-12112. doi:10.2147/OTT.S281810
    Song Y, Wright JG, Anderson MJ, et al. Quantitative Detection of Cathepsin B Activity in Neutral pH Buffers Using Gold Microelectrode Arrays: Toward Direct Multiplex Analyses of Extracellular Proteases in Human Serum. ACS Sens. 2021;6(10):3621-3631. doi:10.1021/acssensors.1c01175
    Staudt LM. Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol. 2010;2(6):a000109. doi:10.1101/cshperspect.a000109
    Stein CA, Hansen JB, Lai J, et al. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res. 2010;38(1):e3. doi:10.1093/nar/gkp841
    Su Y, Sun B, Lin X, Zhao X, Ji W, He M, Qian H, Song X, Yang J, Wang J, Chen J. Therapeutic strategy with artificially-designed i-lncRNA targeting multiple oncogenic microRNAs exhibits effective antitumor activity in diffuse large B-cell lymphoma. Oncotarget. 2016;7(31):49143-49155. doi:10.18632/oncotarget.9237
    Sun K, Pu L, Chen C, et al. An autocatalytic CRISPR-Cas amplification effect propelled by the LNA-modified split activators for DNA sensing. Nucleic Acids Res. 2024;52(7):e39. doi:10.1093/nar/gkae176
    Susanibar-Adaniya S, Barta SK. 2021 Update on Diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. Am J Hematol. 2021;96(5):617-629. doi:10.1002/ajh.26151
    Taiwan Ministry of health and welfare. 111年衛生福利部國人死因統計 https://www.mohw.gov.tw/cp-16-74869-1.html
    Takakura Y, Nishikawa M, Yamashita F, Hashida M. Influence of physicochemical properties on pharmacokinetics of non-viral vectors for gene delivery. J Drug Target. 2002;10(2):99-104. doi:10.1080/10611860290016694
    Tang H, Zhao W, Yu J, Li Y, Zhao C. Recent Development of pH-Responsive Polymers for Cancer Nanomedicine. Molecules. 2018;24(1):4. doi:10.3390/molecules24010004
    Tatiparti K, Sau S, Kashaw SK, Iyer AK. siRNA Delivery Strategies: A Comprehensive Review of Recent Developments. Nanomaterials (Basel). 2017;7(4):77. doi:10.3390/nano7040077
    Tokar T, Pastrello C, Rossos AEM, Abovsky M, Hauschild AC, Tsay M, Lu R, Jurisica I. mirDIP 4.1-integrative database of human microRNA target predictions. Nucleic Acids Res. 2024;46(D1):D360-D370. doi:10.1093/nar/gkx1144
    Tong Y, Zhou MH, Li SP, Zhao HM, Zhang YR, Chen D, Wu YX, Pang QF. MiR-155-5p Attenuates Vascular Smooth Muscle Cell Oxidative Stress and Migration via Inhibiting BACH1 Expression. Biomedicines. 2023;11(6):1679. doi:10.3390/biomedicines11061679
    Tong X, Ga L, Ai J, Wang Y. Progress in cancer drug delivery based on AS1411 oriented nanomaterials. J Nanobiotechnology. 2022;20(1):57. doi:10.1186/s12951-022-01240-z
    Traber GM, Yu AM. RNAi-Based Therapeutics and Novel RNA Bioengineering Technologies. J Pharmacol Exp Ther. 2023;384(1):133-154. doi:10.1124/jpet.122.001234
    Urata T, Naoi Y, Jiang A, Boyle M, Sunami K, Imai T, Nawa Y, Hiramatsu Y, Yamamoto K, Fujii S, Yoshida I, Yano T, Chijimatsu R, Murakami H, Ikeuchi K, Kobayashi H, Tani K, Ujiie H, Inoue H, Tomida S, Yamamoto A, Kondo T, Fujiwara H, Asada N, Nishimori H, Fujii K, Fujii N, Matsuoka KI, Sawada K, Momose S, Tamaru JI, Nishikori A, Sato Y, Yoshino T, Maeda Y, Scott DW, Ennishi D. Distribution and clinical impact of molecular subtypes with dark zone signature of DLBCL in a Japanese real-world study. Blood Adv. 2023;7(24):7459-7470. doi:10.1182/bloodadvances.2023010402
    van Jaarsveld MT, van Kuijk PF, Boersma AW, et al. miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol Cancer. 2015;14:196. doi:10.1186/s12943-015-0464-4
    van Rooij E, Kauppinen S. Development of microRNA therapeutics is coming of age. EMBO Mol Med. 2014;6(7):851-864. doi:10.15252/emmm.201100899
    Van Roosbroeck K, Fanini F, Setoyama T. Combining Anti-Mir-155 with Chemotherapy for the Treatment of Lung Cancers. Clin Cancer Res. 2017;23(11):2891-2904. doi:10.1158/1078-0432.CCR-16-1025
    Vysochinskaya V, Shishlyannikov S, Zabrodskaya Y, et al. Influence of Lipid Composition of Cationic Liposomes 2X3-DOPE on mRNA Delivery into Eukaryotic Cells. Pharmaceutics. 2022;15(1):8. doi:10.3390/pharmaceutics15010008
    Vysochinskaya V, Shishlyannikov S, Zabrodskaya Y, et al. Influence of Lipid Composition of Cationic Liposomes 2X3-DOPE on mRNA Delivery into Eukaryotic Cells. Pharmaceutics. 2022;15(1):8. doi:10.3390/pharmaceutics15010008
    Wagner A, Platzgummer M, Kreismayr G. GMP production of liposomes--a new industrial approach. J Liposome Res. 2006;16(3):311-319. doi:10.1080/08982100600851086
    Wang KH, Ding DC. Role of cancer-associated mesenchymal stem cells in the tumor microenvironment: A review. Tzu Chi Med J. 2022;35(1):24-30. doi:10.4103/tcmj.tcmj_138_22
    Wang M, Sun J, Xu B, et al. Functional Characterization of MicroRNA-27a-3p Expression in Human Polycystic Ovary Syndrome. Endocrinology. 2018;159(1):297-309. doi:10.1210/en.2017-00219
    Wang X. miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA. 2008;14(6):1012-7. doi:10.1261/rna.965408
    Warfel NA, El-Deiry WS. p21WAF1 and tumourigenesis: 20 years after. Curr Opin Oncol. 2013;25(1):52-8. doi:10.1097/CCO.0b013e32835b639e
    Wu D, Wang C. miR-155 Regulates the Proliferation of Glioma Cells Through PI3K/AKT Signaling. Front Neurol. 2020;11:297. doi:10.3389/fneur.2020.00297
    Wu H, Huang T, Ying L. MiR-155 is Involved in Renal Ischemia-Reperfusion Injury via Direct Targeting of FoxO3a and Regulating Renal Tubular Cell Pyroptosis. Cell Physiol Biochem. 2016;40(6):1692-1705. doi:10.1159/000453218
    Wu L, Zhou W, Lin L, Chen A, Feng J, Qu X, Zhang H, Yue J. Delivery of therapeutic oligonucleotides in nanoscale. Bioact Mater. 2021;7:292-323. doi:10.1016/j.bioactmat.2021.05.038
    Xia Y, Tian J, Chen X. Effect of surface properties on liposomal siRNA delivery. Biomaterials. 2016;79:56-68. doi:10.1016/j.biomaterials.2015.11.056
    Xia Y, Xu-Monette ZY, Tzankov A. Loss of PRDM1/BLIMP-1 function contributes to poor prognosis of activated B-cell-like diffuse large B-cell lymphoma. Leukemia. 2017;31(3):625-636. doi:10.1038/leu.2016.243
    Xu N, Lao Y, Zhang Y, Gillespie DA. Akt: a double-edged sword in cell proliferation and genome stability. J Oncol. 2012;2012:951724. doi:10.1155/2012/951724
    Xu W, Berning P, Lenz G. Targeting B-cell receptor and PI3K signaling in diffuse large B-cell lymphoma. Blood. 2021;138(13):1110-1119. doi:10.1182/blood.2020006784
    Yang SA, Rhee KH, Yoo HJ, Pyo MC, Lee KW. Ochratoxin A induces endoplasmic reticulum stress and fibrosis in the kidney via the HIF-1α/miR-155-5p link. Toxicol Rep. 2023;10:133-145. doi:10.1016/j.toxrep.2023.01.006
    Yazdian-Robati R, Bayat P, Oroojalian F. Therapeutic applications of AS1411 aptamer, an update review. Int J Biol Macromol. 2020;155:1420-1431. doi:10.1016/j.ijbiomac.2019.11.118
    Zhang B, Calado DP, Wang Z. An oncogenic role for alternative NF-κB signaling in DLBCL revealed upon deregulated BCL6 expression. Cell Rep. 2015;11(5):715-726. doi:10.1016/j.celrep.2015.03.059
    Zhang J, Medeiros LJ, Young KH. The prognostic and predictive relevance of p53 mutations and RELA expression in DLBCL. J Hematol Oncol. 2024;9(1):72. doi:10.62347/LHIO8294
    Zhang M, Xu-Monette ZY, Li L, et al. RelA NF-κB subunit activation as a therapeutic target in diffuse large B-cell lymphoma. Aging (Albany NY). 2016;8(12):3321-3340. doi:10.18632/aging.101121
    Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm. 2021;2(4):618-653. doi:10.1002/mco2.104
    Zhang X, Hai L, Gao Y, Yu G, Sun Y. Lipid nanomaterials-based RNA therapy and cancer treatment. Acta Pharm Sin B. 2023 13(3):903-915. doi: 10.1016/j.apsb.2022.10.004
    Zhang Y, Li H, Sun J. DC-Chol/DOPE cationic liposomes: a comparative study of the influence factors on plasmid pDNA and siRNA gene delivery. Int J Pharm. 2010;390(2):198-207. doi:10.1016/j.ijpharm.2010.01.035
    Zhang C, Tang N, Liu X, Liang W, Xu W, Torchilin VP. siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. J Control Release. 2006;112(2):229-239. doi:10.1016/j.jconrel.2006.01.022
    Zhang Y, Li H, Sun J, et al. DC-Chol/DOPE cationic liposomes: a comparative study of the influence factors on plasmid pDNA and siRNA gene delivery. Int J Pharm. 2010;390(2):198-207. doi:10.1016/j.ijpharm.2010.01.035
    Zhao CC, Jiao Y, Zhang YY, Ning J, Zhang YR, Xu J, Wei W, Kang-Sheng G. Lnc SMAD5-AS1 as ceRNA inhibit proliferation of diffuse large B cell lymphoma via Wnt/β-catenin pathway by sponging miR-135b-5p to elevate expression of APC. Cell Death Dis. 2019;10(4):252. doi:10.1038/s41419-019-1479-3
    Zhao M, Yang H, Jiang X, et al. Lipofectamine RNAiMAX: an efficient siRNA transfection reagent in human embryonic stem cells. Mol Biotechnol. 2008;40(1):19-26. doi:10.1007/s12033-008-9043-x
    Zhong H, May MJ, Jimi E, Ghosh S. The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell. 2002;9(3):625-36. doi:10.1016/s1097-2765(02)00477-x
    Zhou W, Xu F, Li D, Chen Y. Improved Detection of HER2 by a Quasi-Targeted Proteomics Approach Using Aptamer-Peptide Probe and Liquid Chromatography-Tandem Mass Spectrometry. Clin Chem. 2018;64(3):526-535. doi:10.1373/clinchem.2017.274266
    Zhu FQ, Zeng L, Tang N. MicroRNA-155 Downregulation Promotes Cell Cycle Arrest and Apoptosis in Diffuse Large B-Cell Lymphoma. Oncol Res. 2016;24(6):415-427. doi:10.3727/096504016X14685034103473
    Zimmer TS, Korotkov A, Zwakenberg S, Jansen FE, Zwartkruis FJT, Rensing NR, Wong M, Mühlebner A, van Vliet EA, Aronica E, Mills JD. Upregulation of the pathogenic transcription factor SPI1/PU.1 in tuberous sclerosis complex and focal cortical dysplasia by oxidative stress. Brain Pathol. 2021;31(5):e12949. doi:10.1111/bpa.12949
    Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981;9(1):133-48. doi:10.1093/nar/9.1.133

    QR CODE