研究生: |
陳盈方 Ying-Fang Chen |
---|---|
論文名稱: |
利用原子力顯微術之機械力微影及電致遷移製作奈米電極 Fabrication of Nanoelectrodes by Atomic Force Microscopy Nanomachining and Electromigration |
指導教授: |
林鶴南
Heh-Nan Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 51 |
中文關鍵詞: | 奈米電極 、機械力微影 、電致遷移 |
外文關鍵詞: | nanoelectrodes, nanomachining, electromigration |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗使用原子力顯微術之機械力微影方式先製作出奈米溝槽,鍍金後結合去阻劑製程可得到寬度50~90 nm的金奈米線,再結合光學微影術,可製作出毫微米電極於線的兩端。接著在金奈米線上,以原子力顯微術之機械力微影方式在奈米線上輕壓而不切斷,並經由電性量測確定仍為一導電通路後,再外加以速率每秒0.02 V上升的電壓,可發現在奈米線上所輕壓的位置會破斷形成間距大約小於10 nm的奈米電極。此因當奈米線超出所能負載的電流密度大約為108 A/cm2時,電致遷移 (electromigration) 的發生會導致金奈米線在輕壓處破斷,因此藉由機械力微影可控制奈米線破斷的位置。
Nanoelectrodes with nanometer separation (nanogap) are achieved by the combination of atomic force microscopy nanomachining and electromigration. By controlling the force of an atomic force microscopy (AFM) tip on a thin PMMA resist, a nanoscale groove is first created. By coating a gold film and performing a lift-off process, a gold nanowire with a width which ranges from 50 nm to 90 nm is successfully fabricated. Afterwards, by combining the photolithography with the process above, a pair of contact pads connecting a metallic nanowire is created. Then the nanowire is indented by AFM nanomachining. By measuring IV characteristic of the nanowire, the indented nanowire without splitting is assured. By externally applying a bias voltage (sweeping rate= 0.02V/sec) across the gold nanowire, the nanowire would split because of the occurrence of electromigration as the current density exceeds the critical value of 108 A/cm2. Therefore, the nanoelectrodes with the separation around 10 nm at the indented site can be realized. And the AFM nanomachining is utilized to control the site of nanowire’s split.
M. M. Deshmukh, A.L. Prieto, Q. Gu, and H. Park, Nano Lett. 3, 1383 (2003)
A. F. Morpurgo, C.M. Marcus, and D.B. Robinson, Appl. Phys. Lett. 77, 3995 (2000)
V. Rajagopalan, S. Boussaad, and N. J. Tao, Nano lett. 3, 851 (2003)
A. K. Mahapatro, S. Ghosh, and D.B. Janes IEEE Trans. Nanotechnology 5, 3 (2006)
H. Park, A. K. L. Lim, and A.P. Alivisatos, Appl. Phys. Lett. 75, 301 (1999)
C. Zhou, C. J. Muller, M. R. Deshpande, J.W. Sleight, and M.A. Reed, Appl. Phys. Lett. 67, 1160 (1995)
J. Voets, R. J. Keijsers, O. I. Shklyarevskii, and H. V. Kempen, Phisica B 218 ,290 (1996)
J. R. Black, IEEE Trans. Electron Devices ED-16, 338 (1969)
D. Young and A. Christou, IEEE Trans. Reliab. 43, 186 (1994)
J. Chung and J. Lee, Nano Lett. 3,1029 (2003)
J. Chung and J. Lee, Sensor Actuat A-Phys, 104, 229 (2003)
T. Miyazaki, K. Kobayashi, T. Horiuchi, H. Yamada, and K. Matsushige, Jpn. J. Appl. Phys. 40, 4365 (2001)
R. M. Nyffenegger and R. M. Penner, Chem. Rev. 97, 1195 (1997)
D. Wouters and U. S. Schubert, Angew. Chem. Int. Ed. 43, 2480 (2004)
T. Sumomogi, T. Endo, K. Kuwahara, R. Kaneko, T. Miyamoto, J. Vac. ci. Technol. B 13, 1257 (1994)
M. Wendel, S. Kühn, H. Lorenz, J. P. Kotthaus, and M. Holland, Appl. Phys. Lett. 65, 1775 (1994)
B. Klehn and U. Kunze, J. Appl. Phys. 85, 3897 (1999)
L. L. Sohn and R. L. Willett, Appl. Phys. Lett. 67, 1552 (1995)
V. Bouchiat and D. Esteve, Appl. Phys. Lett. 69, 3098 (1996)
S. Hu, A. Hamidi, S. Altmeyer, T. Köster, B. Spangenberg, and H. Kurz, J. Vac. Sci. Technol. B 16, 2822 (1998)
G. K. Ramachandran, M. D. Edelstein, D. L. Blackburn, J. S. Suehle, E. M. Volgel, and C. A. Richter, Nanotechnology 16, 1294 (2005)
R. Sordan, K. Balasubramanian, M. Burghard, and K. Ken, Appl. Phys. Lett. 87, 013106 (2005)
A. F. Morpurgo, C.M. Marcus, and D.B. Robinson, Appl. Phys. Lett. 74, 5 (1999)
K. Liu, P. Avouris, J. Bucchignano, R. Martel, S. Sun, and J. Michl, Appl. Phys. Lett. 80, 865 (2002)
H. Zhang, S. W. Chung, and C. A. Mirkin, Nano. Lett. 3, 43 (2003)
I. Heller, J. Kong, H. A. Heerinh, K. A. Williams, S. G. Lemay, and C. Dekker, Nano Lett. 5, 137 (2005)
J. R. Black, IEEE T. Electron. Dev. ED-16, 338 (1969)
I. A. Blech, J. Appl. Phys. 47, 1203 (1976)
D. Young and A. Christou, IEEE T. Reliab. 43, 186 (1994)
C. C. Wei and C. Chen, Appl. Phys. Lett. 88, 182105 (2006)
I. A. Bleach, Acta. Mater. 46, 3717 (1998)
J. R. Lloyd, Semicond. Sci. Technol. 12, 1177 (1997)
Y. T. Yeh, C. K. Chou, Y. C. Hsu, and Chih Chen, Appl. Phys. Lett. 86, 203504(2005)
H. Ahmed, K. Nakazato, Microelectron. Eng. 32, 297 (1996)
C. J. Gorter, Physica. 17, 777 (1951)
R. Kubo, J. Phy. Soc. Jpn. 17, 975 (1962)
I. Giaever and H. R. Zeller, Phys. Rev. Lett. 20, 1504 (1968)
H. R. Zeller and I. Giaever, Phys. Rev. 181, 789 (1969)
J. Lambe and R. C. Jaklevic, Phys. Rev. Lett.22, 1371 (1969)
K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Epworth and D. M. Tennant, Phys. Rev. Lett. 52, 228 (1984)
R. A. Smith and H. Ahmed, J. Appl. Phys. 81, 15 (1997)
A. A. M. Staring, H. V. Houten, and C. W. J. Beenakker, Physc. Rev. B. 45, 92222 (1992)
U. Meirav and E. B. Foxman, Semicond. Sci. Technol. 11, 155 (1996)
http://physicsweb.org/articles/world/11/9/7/1#world-11-9-7-1
M. A. Kastner, Rev. Mod. Phy. 64, 849 (1992)
K. N. Tu, Phys. Rev. B. 45, 1409 (1992)
M. Austin and S. Y. Chou, J. Vac. Sci. Technol. B, 20, 665 (2002)
K. N. Tu, J. Appl. Phys. 94, 5451 (2003)
K. N. Tu, Phys. Rev. B. 45, 1409 (1992)
K. Gall, J. Diao, and M. L. Dunn, Nano Lett. 4, 2431 (2004)
S. N. Cha, J. E. Jang, G. A. J. Amaratunga, D. J. Kang, D. G. Hasko, J. E. Jung, and J. M. Kim, Appl. Phys. Lett. 86, 083105 (2005)