簡易檢索 / 詳目顯示

研究生: 許祐誠
Hsu, Yu-Chen
論文名稱: GRS1915+105 X光雙星系統長時間尺度變化分析
THE LONG-TERM VARIABILITY ANALYSIS OF THE X-RAY BINARY SYSTEM GRS1915+105
指導教授: 江國興
Kong, Albert K.H.
口試委員: 胡欽評
Hu, Chin-Ping
李君樂
Li, Kwan Lok
林峻哲
Lupin, C. C. Lin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 67
中文關鍵詞: X射線黑洞雙星系統
外文關鍵詞: X-ray, Black hole, Binary system
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究GRS 1915+105於長時間尺度下的變化,其中GRS 1915+105是由一顆規則恆星的伴星和黑洞所組成的X射線雙星系統。該系統於1992年8月15日第一次被全天監視天文望遠鏡Granat所觀測到,同時成為第一個銀河系內已知的超光速噴流。我們透過MAXI天文望遠鏡分析自2009年到2020年底對GRS 1915+105的觀測資料,顯示出其在X射線波段長時間穩定的爆發,然而2018年開始GRS 1915+105進入了相對低通量,且較為混亂的高硬度狀態。藉由光譜圖和硬度圖下的變化可以區分為5段不同的表現;同時我們比對過往的觀察,發現了GRS 1915+105過去不曾被討論過,處於相較之下低通量但低硬度的異常狀態,稱為非常低硬度態(VSS)。在長時間尺度的觀測下,我們主要利用單一參數模型來解釋這些狀態的物理意義,及模擬吸積盤或周圍物質可能發生的幾何變化。藉以更進一步了解GRS 1915+105系統的演化,並有助於在X射線天文學領域中進行具有類似行為活躍星系核的後續研究。


    This thesis aims to research the X-ray variability on a long-term scale of the X-ray binary system GRS 1915+105 which is composed of a regular star and a black hole. This system was first discovered by the all-sky monitor telescope Granat on August 15, 1992, and became the first known astronomical object that ejects material with apparent superluminal motion velocities in the Milky Way. We analyzed the observational data of GRS 1915+105 from 2009 to the end of 2020 through the MAXI telescope, demonstrating several transient outbursts persistently occurred in the X-ray energy band over a long timescale. GRS 1915+105 entered a relatively low flux and rather chaotic hard state since 2018, called obscured state. We can divide the behavior of GRS 1915+105 into 5 different parts via the spectra and the hardness-intensity diagram. In addition, we compared the literature and found three unprecedentedly soft but relatively low flux states that GRS 1915+105 had not been discussed in the past. We called them the very soft states. In this thesis, we mainly adopt simple spectral models to explain the physics behind these states and model the geometric transition of the accretion disk or surrounding materials. This study provides insight into the evolution of GRS 1915+105 and will motivate similar studies of long-term X-ray evolution of active galactic nuclei.

    § Chapter1: Introduction 1 1.1 A Brief History of X-ray Astronomy 1 1.2 Introduction of X-ray binaries 2 1.3 Hardness Ratios 6 1.3.1 Color-Color Diagram 6 1.3.2 Hardness-Intensity Diagram 8 1.4 X-ray Long-term Variability 9 1.5 Introduction of X-ray Telescopes 11 1.5.1 Swift’s Burst Alert Telescopes (Swift/BAT) 12 1.5.2 Rossi X-ray Timing Explorer (RXTE) 14 1.5.3 Monitor of All-sky X-ray Image (MAXI) 16 § Chapter2: A Brief History of GRS 1915+105 19 2.1 Model-Independent Analysis of Variability 20 2.1.1 Spectral States and Variability Classifications of GRS 1915+105 20 2.1.2 The Disk-Jet Coupling of GRS 1915+105 24 2.2 Research Outline 26 § Chapter3: Observations and Data Analysis 27 3.1 Observations 27 3.2 Hurst Exponent 28 3.3 Hilbert-Huang Transform 29 3.3.1 Empirical Mode Decomposition 30 3.3.2 Orthogonality 31 § Chapter4: Results 33 4.1 Overall Behavior 33 4.2 Hardness Ratios Analysis 37 4.2.1 Color-Color Diagram (CD) 37 4.2.2 Hardness-Intensity Diagram (HID) 39 4.3 Empirical Mode Decomposition Analysis 41 4.4 Spectral Analysis 47 § Chapter5: Discussion and Summary 55 5.1 Discussion 55 5.1.1 Physical Mechanism of the Obscured and VSS states 55 5.1.2 Long-term Variability Analysis 60 5.1.3 Classification of GRS 1915+105 in long-term timescales 61 5.2 Summary and Conclusions 63 § Reference 64

    Athulya, M. P., et al. "Unraveling the foretime of GRS 1915+ 105 using
    AstroSat observations: Wide-band spectral and temporal characteristics." Monthly Notices of the Royal Astronomical Society (2021)
    Balakrishnan M., Miller J. M., Reynolds M. T., Kammoun E., Zoghbi A., Tetarenko B. E., 2020, arXiv e-prints, p. arXiv:2012.15033
    Barthelmy, S. D., on behalf of the swift Instrument Team, 2000, SPIE, 4140, 50
    Barthelmy, S. D., Barbier, L. M., Cummings, J. R., Fenimore, E. E., Gerhels, N., Hullinger, D., Krimm, H. A., Markqardt, C. B., Palmer, D. M., Parsons, A., Goro, S., Suzuki, M., Takahashi, T., Tashiro, M., & Tueller, J, 2005, Space Sci. Rev., 120, 143-164
    Belloni, T. M., & Altamirano, D. (2013a). High-frequency quasi-periodic oscillations from GRS 1915+ 105. Monthly Notices of the Royal Astronomical Society, 432(1), 10-18
    Belloni, T. M., & Altamirano, D. (2013b). Discovery of a 34 Hz quasi-periodic oscillation in the X-ray emission of GRS 1915+ 105. Monthly Notices of the Royal Astronomical Society, 432(1), 19-22
    Belloni, T., Klein-Wolt, M., Méndez, M., Van Der Klis, M., & Van Paradijs, J. (2000). A model-independent analysis of the variability of GRS 1915+ 105. arXiv preprint astro-ph/0001103
    Belloni, T., Mendez, M., King, A. R., van der Klis, M., & Van Paradijs, J. (1997). A unified model for the spectral variability in GRS 1915+ 105. The Astrophysical Journal, 488(2), L109
    Brassington, N. J., Fabbiano, G., Blake, S., Zezas, A., Angelini, L., Davies, R. L., ... & Zepf, S. (2010). The X-ray spectra of the luminous LMXBs in NGC 3379: field and globular cluster sources. The Astrophysical Journal, 725(2), 1805
    Casella, P., Maccarone, T. J., O'Brien, K., Fender, R. P., Russell, D. M., Van Der Klis, M., ... & Wijnands, R. (2010). Fast infrared variability from a relativistic jet in GX 339-4. Monthly Notices of the Royal Astronomical Society: Letters, 404(1), L21-L25
    Chapuis, C., & Corbel, S. (2004). On the optical extinction and distance of GRS 1915+ 105. Astronomy & Astrophysics, 414(2), 659-665
    Charles, P. A., Charles, P. A., & Seward, F. D. (1995). Exploring the X-ray Universe. CUP Archive
    Debnath, D., Chatterjee, K., Nath, S. K., Chang, H. K., & Bhowmick, R. (2021). Properties of 2017 18 'failed' Outburst of GX 339-4. arXiv preprint arXiv:2111.13403
    Esin, A. A., McClintock, J. E., & Narayan, R. (1997). Advection-dominated accretion and the spectral states of black hole X-ray binaries: application to Nova Muscae 1991. The Astrophysical Journal, 489(2), 865
    Fender, R. P., et al. "MERLIN observations of relativistic ejections from GRS 1915+ 105." Monthly Notices of the Royal Astronomical Society 304.4 (1999): 865-876.
    Fender, R., & Belloni, T. (2004). GRS 1915+ 105 and the disc-jet coupling in accreting black hole systems. Annu. Rev. Astron. Astrophys., 42, 317-364
    Fender, R. P., Gallo, E., & Jonker, P. G. 2003, MNRAS, 343, L99
    Fender, R. P., & Kuulkers, E. (2001). On the peak radio and X-ray emission from neutron star and black hole candidate X-ray transients. Monthly Notices of the Royal Astronomical Society, 324(4), 923-930
    Gallo, E., Corbel, S., Fender, R. P., Maccarone, T. J., & Tzioumis, A. K. (2004). A transient large-scale relativistic radio jet from GX 339− 4. Monthly Notices of the Royal Astronomical Society, 347(3), L52-L56
    Giacconi, R., Gursky, H., Paolini, F. R., & Rossi, B. B. (1962). Evidence for x rays from sources outside the solar system. Physical Review Letters, 9(11), 439. Huang, N. E., Shen, Z., Long, S. R., et al. 1998
    Gierlin´ ski, Marek, and Chris Done. "A comment on the colour-colour diagrams of low-mass X-ray binaries."Monthly Notices of the Royal Astronomical Society331.4 (2002): L47-L50
    Hovatta, T., Tornikoski, M., Lainela, M., Lehto, H. J., Valtaoja, E., Torniainen, I., ... & Aller, H. D. (2007). Statistical analyses of long-term variability of AGN at high radio frequencies. Astronomy & Astrophysics, 469(3), 899-912
    Huang, Norden E., et al. "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis." Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences 454.1971 (1998): 903-995
    Ingram, A., Done, C., & Fragile, P. C. (2009). Low-frequency quasi-periodic oscillations spectra and Lense–Thirring precession. Monthly Notices of the Royal Astronomical Society: Letters, 397(1), L101-L105
    Kammoun, E. S., Miller, J. M., Koss, M., Oh, K., Zoghbi, A., Mushotzky, R. F., ... & Stern, D. (2020). A hard look at local, optically selected, obscured Seyfert galaxies. The Astrophysical Journal, 901(2), 161
    Kammoun, E. S., Miller, J. M., Zoghbi, A., Oh, K., Koss, M., Mushotzky, R. F., ... & Stern, D. (2019). A hard look at NGC 5347: revealing a nearby Compton-thick AGN. The Astrophysical Journal, 877(2), 102
    Kidger, M., Takalo, L., & Sillanpaa, A. (1992). A new analysis of the 11-year period in OJ287-Confirmation of its existence. Astronomy and Astrophysics, 264, 32-36
    Koljonen K. I. I., Hannikainen D. C., McCollough M. L., Pooley G. G. and Trushkin S. A. 2010
    Koljonen, K. I., & Hovatta, T. (2021). ALMA/NICER observations of GRS 1915+ 105 indicate a return to a hard state. Astronomy & Astrophysics, 647, A173
    Kotze, M. M., & Charles, P. A. (2012). Characterizing X-ray binary long-term variability. Monthly Notices of the Royal Astronomical Society, 420(2), 1575-1589
    Li, X. P., Luo, Y. H., Yang, H. Y., Yang, C., Cai, Y., & Yang, H. T. (2017). A Search for Quasi-periodic Oscillations in the Blazar 1ES 1959+ 650. The Astrophysical Journal, 847(1), 8
    Marscher, Alan P., et al. "Observational evidence for the accretion-disk origin for a radio jet in an active galaxy." Nature 417.6889 (2002): 625-627
    McClintock, J. E., Shafee, R., Narayan, R., Remillard, R. A., Davis, S. W., & Li, L. X. (2006). The spin of the near-extreme Kerr black hole GRS 1915+ 105. The Astrophysical Journal, 652(1), 518
    Méndez, M., Altamirano, D., Belloni, T., & Sanna, A. (2013). The phase lags of high-frequency quasi-periodic oscillations in four black hole candidates. Monthly Notices of the Royal Astronomical Society, 435(3), 2132-2140
    Mendez, M., van der Klis, M., Ford, E. C., Wijnands, R., & van Paradijs, J. (1998). Dependence of the frequency of the kilohertz quasi-periodic oscillationson X-ray count rate and colors in 4U 1608–52.The Astrophysical Journal,511(1), L49
    Meyer, F., Liu, B. F., & Meyer-Hofmeister, E. (2007). Re-condensation from an ADAF into an inner disk: the intermediate state of black hole accretion? Astronomy & Astrophysics, 463(1), 1-9
    Miller, J. M., Zoghbi, A., Raymond, J., Balakrishnan, M., Brenneman, L., Cackett, E., ... & Trueba, N. (2020). An Obscured, Seyfert 2–like State of the Stellar-mass Black Hole GRS 1915+ 105 Caused by Failed Disk Winds. The Astrophysical Journal, 904(1), 30
    Mirabel, I. F., & Rodriguez, L. F. (1999). Sources of relativistic jets in the galaxy. Annual Review of Astronomy and Astrophysics, 37(1), 409-443
    Motta, S. E., Kajava, J. J. E., Giustini, M., Williams, D. R. A., Del Santo, M., Fender, R., ... & Woudt, P. A. (2021). Observations of a radio-bright, X-ray obscured GRS 1915+ 105. Monthly Notices of the Royal Astronomical Society, 503(1), 152-161
    Motta S., Williams D., Fender R., Titterington D., Green D., Perrott Y., 2019, The Astronomer’s Telegram, 12773
    Neilsen, J., Homan, J., Steiner, J. F., et al. 2020, ApJ, 902, 152
    Pahari, M., Neilsen, J., Yadav, J. S., Misra, R., & Uttley, P. (2013). Comparison of time/phase lags in the hard state and plateau state of GRS 1915+ 105. The Astrophysical Journal, 778(2), 136
    Prestwich, A. H., Irwin, J. A., Kilgard, R. E., Krauss, M. I., Zezas, A., Primini, F., & Kaaret, P. 2003, ApJ, 595, 719
    Proga, D., & Kallman, T. R. (2002). On the role of the ultraviolet and X-ray radiation in driving a disk wind in X-ray binaries. The Astrophysical Journal, 565(1), 455
    Reig P, Belloni T, van der Klis M. 2003. Astron. Astrophys. 412:229
    Reid, M. J., McClintock, J. E., Steiner, J. F., Steeghs, D., Remillard, R. A., Dhawan, V., & Narayan, R. (2014). A parallax distance to the microquasar GRS 1915+ 105 and a revised estimate of its black hole mass. The Astrophysical Journal, 796(1), 2
    Rodriguez, J., Chenevez, J., Cangemi, F., & Corbel, S. (2019). INTEGRAL and Neil Gehrels Swift observations of GRS 1915+ 105 during its recent low luminosity hard state may indicate the source is going towards quiescence
    Rushton, A., Spencer, R., Fender, R., & Pooley, G. (2010). Steady jets from radiatively efficient hard states in GRS 1915+ 105. Astronomy & Astrophysics, 524, A29
    Seward, F., & Charles, P. 2010, Exploring the X-ray Universe (Cambridge: Cambridge University Press), 2nd ed
    Shaposhnikov, N., & Titarchuk, L. 2008, AAS/High Energy Astrophysics Division, 10, 01.08
    Steiner J. F., McClintock J. E., Remillard R. A., Gou L., Yamada S., Narayan R., 2010, ApJL, 718, L117
    Strohmayer, T. E. (2001). Discovery of a second high-frequency quasi-periodic oscillation from the microquasar GRS 1915+ 105. The Astrophysical Journal, 554(2), L169
    Tortosa, Alessia. Comptonization mechanisms in hot coronae in AGN. The NuSTAR view. Diss. UNIVERSITÀ DEGLI STUDI “ROMA TRE, 2017
    Truss, M. R., & Wynn, G. A. (2004). Long time‐scale variability in GRS 1915+ 105. Monthly Notices of the Royal Astronomical Society, 353(4), 1048-1054
    Ueno, Shiro, et al. "Development status and performance estimation of MAXI." UV and Gamma-Ray Space Telescope Systems. Vol. 5488. SPIE, 2004
    Vaughan, S. "A simple test for periodic signals in red noise." Astronomy & Astrophysics 431.1 (2005): 391-403
    Wu, Z., & Huang, N. E. (2004). A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 460(2046), 1597-1611
    Wu, Zhaohua, and Norden E. Huang. "Ensemble empirical mode decomposition: a noise-assisted data analysis method." Advances in adaptive data analysis 1.01 (2009): 1-41
    Zdziarski, A. A. & Gierlinski, M. 2003, in Proceedings of ”Stellar-mass, intermediate-mass, and supermassive black holes”, Kyoto astro-ph/0403683 (ZG04), 99–119
    Zhang, P., & Wang, Z. (2021). A Radio Quasi-periodic Oscillation of 176 days in the Radio-loud Narrow-line Seyfert 1 Galaxy J0849+ 5108. The Astrophysical Journal, 914(1), 1

    QR CODE