簡易檢索 / 詳目顯示

研究生: 李孟融
Lee, Meng-Jung
論文名稱: 自旋子慢光的實現與其應用的展示
Experimental Realization of Spinor Slow Light and Demonstration of Its Application
指導教授: 余怡德
Yu, Ite A.
口試委員: 張銘顯
Ming-Shien Chang
褚志崧
Chih- Sung Chuu
陳泳帆
Yong-Fan Chen
陳應誠
Ying-Cheng Chen
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 111
中文關鍵詞: 自旋子慢光光譜三角架干涉儀冷原子
外文關鍵詞: spinor, slow light, spectrum, tripod, interferometer, cold atom
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全篇論文首先研究雙三角架系統的理論,接著提出實驗數據,率先驗證自旋子慢光的理論並且利用光儲存的方式展示最新的應用方向。電磁引發的透明(EIT)是一個量子干涉的現象,使得一個光子即使本身處在共振頻率上,也可以完好的通過一個介質,或者也可以說介質對它而言是完全透明的。然而,因為很大的色散效應,這顆光子的群速度驚人的減慢了。基本的模型的系統是由一道探測光和一道偶合光驅動的能階系統,其中只形成單頻的探測光。我們進一步擴展基本的結構,在其中添加一個激發態和一個基態,形成一個五能階組成的雙三角架系統,有兩道探測光和四道偶合光等六道光與相應能階共振。因為六波混頻的效果,在雙三角架系統中的慢光,其探測光的能量可以從一道轉換到另外一道,其中的效應可以類比於自旋系統中的自旋向上和自旋向下之間的轉換關係。
    在理論上我們研究這個雙頻率分量的自旋子慢光,而且進一步和能階和能階下的系統比較。在雙三角架系統中,道偶合光的相對相位可以改變波向量(wave vector);在相位為時,使介質中兩個傳遞的模態都據有EIT透明的效果。可以從兩道探測光的輸出能量的震盪現象得知這兩個傳遞的模態的干涉行為。
    更進一步,我們在實驗系統上利用雙光子失諧(two-photon detuning)頻率的調變,觀察到上述的震盪行為。我們存自旋子慢光到介質中,發現雙三角架系統就像是一個干涉儀,可以應用在頻率上的精密測量。我們也展示一個可能的雙色光量子位元的暫存器或調變器的應用。我們的研究工作在EIT領域上開拓了一個重大領程碑,為量子光學的應用的開啟更廣的發展方向。


    The purpose of the thesis is to study the properties of a double-tripod system theoretically, and then demonstrate experimentally the first measurement of spinor slow light and its new applications of the system via the light storage manipulation. Electromagnetically induced transparency (EIT) is a quantum interference phenomenon, in which a photon at the resonant frequency can pass through a medium perfectly, as if it is completely transparent. Furthermore, the group velocity of photons dramatically reduce due to a large dispersion of refraction index. A typical single- EIT system consists of three energy levels driven by a probe and a coupling field, forming a slow light with single frequency component. We extend the single- configuration by additionally adding an excited state and a ground state to form the five-energy-level double-tripod system, which is driven by six fields made up of two probes and four coupling beams. Due to the six-wave-mixing process in the double-tripod scheme, the energy conversion from one probe field to another is analog to the transformation from spin up to spin down in the spin 1/2 system.
    We theoretically study the propagation modes of the two-component spinor slow light and compare its properties to those of 3-level and 4-level EIT systems. In double-tripod scheme, the relative phase between coupling fields makes the wave vectors flexible, and results in the transparency for both propagation modes at phase equal to . An oscillation of energy between the two frequency components of the spinor illustrates the interference of the two transparent modes.
    Moreover, we experimentally observed the oscillation behavior by manipulating the two-photon detunings of both induced atomic ground-state coherences. We store the spinor slow light into the medium and found that the double-tripod system behaves like an interferometer which is feasible for the precision measurement of frequency detuning. We also demonstrate a possible application of a quantum memory or rotator of a two-color qubit. Our work is a milestone in the research of EIT systems and opens a new avenue in the application of quantum optics.

    Contents Abstract i Acknowledgment iii Chapter 1. Introduction 1 1.1 Introduction and motivation 1 1.2 Overview 4 Chapter 2. Magneto optical trap and experimental arrangement 5 2.1 D line structure of 87Rb atom 5 2.2 Magneto-optical trap 7 2.3 The laser systems 9 2.4 The fiber based electro-optic modulator 12 2.5 Timing sequence of experiment 14 Chapter 3. Electromagnetically induced transparency and slow light 16 3.1 Steady-State EIT in 3-level system 16 3.2 Gaussian-pulse probe in single-L system 21 3.3 Slow light experiment 23 Chapter 4. Double-L slow light 27 4.1 The absorption mode and transparent mode 27 4.2 Phase mismatch in the equations of motions 32 4.3 Phase mismatch in our slow-light experiment 33 Chapter 5. Single-tripod slow light 37 5.1 Theory of single-tripod EIT 37 5.2 Single-tripod slow light in experiment 43 5.3 Interference pattern affected by detunings 45 Chapter 6. Theory of spinor slow light 48 6.1 Double-tripod scheme and relative phase among four coupling fields 48 6.2 Two independent modes in double-tripod EIT 56 6.3 Equivalent transition diagrams in the double tripod scheme 58 6.4 Oscillation behavior of the spinor slow light 60 6.5 The effect of phase q on pulsed spinor slow light 64 6.6 Non-ideal mechanisms and the oscillation 67 6.7 The method of setting equal to  71 Chapter 7. Measurement of spinor slow light 73 7.1 Transition scheme arrangement 73 7.2 Experimental setup 75 7.3 Experimental result 77 7.3.1 Energy transmission versus relative phase 77 7.3.2 Experimental measurement of the oscillation behavior 78 Chapter 8. Application of double tripod in light storage 84 8.1 d-dependent retrieved energy 84 8.1.1 Demonstration of experimental data in light storage 84 8.1.2 Numerical calculation and discussion 87 8.2 The double-tripod interferometer 91 8.3 Two-color qubit memory 94 Chapter 9. Conclusions and perspectives 99 Bibliography 102

    [1] M. Fleischhauer, A. Imamoglu and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media”, Rev. Mod. Phys. 77, 633-673 (2005).

    [2] K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency," Phys.Rev.Lett. 66, 2593 (1991).

    [3] M.D. Lukin, and A. Imamoglu, “Nonlinear Optics and Quantum Entanglement
    of Ultraslow Single Photons”, Phys. Rev. Lett. 84, 1419 (2000).

    [4] Z. B. Wang, K. P. Marzlin, and B. C. Sanders, “Large Cross-Phase Modulation
    between Slow Copropagating Weak Pulses in 87Rb”, Phys. Rev. Lett.
    97, 063901 (2006).

    [5] S. Li, X. Yang, X. Cao, C. Zhang, C. Xie, and H. Wang, “Enhanced Cross-
    Phase Modulation Based on a Double Electromagnetically Induced Transparency
    in a Four-Level Tripod Atomic System”, Phys. Rev. Lett. 101, 073602 (2008).

    [6] S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).

    [7] L. V. Hau, S. E. Harris, Z Dutton & C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas”, Nature 397, 594-598 (1999)

    [8] M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency”, Phys. Rev. Lett. 84, 5094–5097 (2000).

    [9] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of Light in Atomic Vapor”, Phys. Rev. Lett. 86, 783 (2001).

    [10] U. Schnorrberger, J.D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically Induced Transparency and Light Storage in an Atomic Mott Insulator”, Phys. Rev. Lett. 103,033003 (2009).

    [11] R. Zhang, S. R. Garner, and L.V. Hau, “Creation of Long-Term Coherent Optical Memory via Controlled Nonlinear Interactions in Bose-Einstein Condensates”, Phys. Rev. Lett.103, 233602 (2009).

    [12] Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute”, Phys. Rev. A 87, 031801 (2013).

    [13] G. Heinze, C. Hubrich, and T. Halfmann, “Stopped Light and Image Storage by Electromagnetically Induced Transparency up to the Regime of One Minute”, Phys. Rev. Lett. 111, 033601 (2013).

    [14] Kash, M. M. et al, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas”, Phys. Rev. Lett. 82,
    5529-5232 (1999).

    [15] K. Ichimura, K. Yamamoto, and N. Gemma, “Evidence for electromagnetically induced transparency in a solid medium”, Phys. Rev. A 58, 4116 (1997).

    [16] Mark C. Phillips and Hailin Wang , “Electromagnetically Induced Transparency in Semiconductors via Biexciton Coherence”, Phys. Rev .Lett. 91, 183602 (2003).

    [17] Yi-Wen Jiang, Ka-Di Zhu, Zhuo-Jie Wu, Xiao-Zhong Yuan and Ming Yao, “Electromagnetically induced transparency in quantum dot systems”, J. Phys. B: At. Mol. Opt. Phys. 39 (2006) 2621–2632.

    [18] Y. H. Chen, M. J. Lee, W. Hung, Y. C. Chen, Y. F. Chen, and I. A. Yu, “Demonstration of the interaction between two stopped light pulses.” Phys. Rev. Lett. 108, 173603 (2012).

    [19] Y. F. Chen, Y. C. Liu, Z. H. Tsai, S. H. Wang, and I. A. Yu,* "Beat-note interferometer for direct phase measurement of photonic information," Phys. Rev. A 72, 033812 (2005).

    [20] Unanyan, R. G. et al. “Spinor slow-light and dirac particles with variable mass.” Phys. Rev. Lett. 105, 173603 (2010).

    [21] Ruseckas, J. et al. “Photonic-band-gap properties for two-component slow light.”
    Phys. Rev. A 83, 063811 (2011).

    [22] T. Peters, Y. H. Chen, J. S. Wang, Y. W. Lin, and I. A. Yu, "Optimizing the retrieval efficiency of stored light pulses," Opt. Express 17, 6665 (2009).

    [23] Y. F. Chen, Y. M. Kao, W. H. Lin, and I. A. Yu, “Phase variation and shape distortion of light pulses in electromagnetically induced transparency media”, Phys. Rev. A 74, 063807 (2006).

    [24] T. Peters, Y. –H. Chen, J. S. Wang, Y. W. Lin, I. A. Yu, “Observation of phase variation within stationary light pulses inside a cold atomic medium”, Opt. Lett. 35, 151 (2010).

    [25] Daniel A. Steck, “Rubidium 87 D Line Data”, (2010).

    [26] Y.-H. Chen, “All-optical switching based on motionless light pulses”, Nat’l Tsing Hua University, PHD thesis (2011).

    [27] T. W. Hänsch, and A. L. Schawlow, “Cooling of gases by laser radiation”, Optics Commutations 13, 68 (1975).

    [28] C. Cohen-Tannoudji, and David Guéry-Odelin, Advances in atomic physics:an overview, (World Scientific, 2011), Chapter 14, 341.

    [29] Chiu, C.-K. et al.“Low-light-level four-wave mixing, by quantum interference”, Phys. Rev. A 89, 023839 (2014)

    [30] Yifu Zhu et. al., “Phase-controlled light switching at low light levels”, Phys. Rev. A 73, 011802R (2006).

    [31] S. W. Su et. al. “An effective thermal-parametrization theory for the slow-light dynamics in a Doppler-broadened electromagnetically induced transparency medium”, J. Phys. B 44, 165504 (2011)
    [32] Y. -F. Hsiao, “Cold atomic media with ultrahigh optical depths”, Phys. Rev. A 90, 055401(2014)

    [33] B. M. Sparkes et. al. “Gradient echo memory in an ultra-high optical depth cold atomic ensemble”, New J. Phys. 15, 085027 (2013).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE