簡易檢索 / 詳目顯示

研究生: 陳弘凱
Hung-Kai Chen
論文名稱: 以RF磁控濺鍍法鍍製多元合金軟磁薄膜及其磁性質與高頻特性分析
Magnetic Properties and High Frequency Application of the Multi-component Soft Magnetic Thin Film Fabricated by RF Magnetron Sputtering
指導教授: 李四海
Shih-Hai Li
杜正恭
Jenq-Gong Duh
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 92
中文關鍵詞: 多元合金高頻軟磁導磁率rf 磁控濺鍍
外文關鍵詞: Multi-component alloy, High frequency, soft magnetic, permeability, rf sputtering
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於各類無線通訊之軟硬體技術的突飛猛進,逐步往語音、數據與多媒體服務並重的第三代(3G)無線通訊發展。由於需要大量且高速的信號傳輸,使相關技術持續往更高傳輸速率與更高頻譜使用效率方向發展。因此,相關的電子元件便需做適當的製程改善,往小型化、低消耗功率、高整合度、高頻段操作性及雙頻或多頻的方向發展。鐵磁薄膜的應用便是一個很好的例子。在原先的既有被動元件-電感中,如果以鐵磁薄膜,取代原先由陶鐵磁材料所燒結而成的元件,將會明顯的提升其高頻的應用性。
    本實驗選用成分為Fe40Co35Ni5Al5Cr5Si10的多元合金作為研究的鐵磁薄膜材料。利用真空合金熔煉方式,可以成功地製作出多元合金薄膜製程用之靶材。再進一步利用RF-磁控濺鍍系統,對一多元之合金靶材作濺鍍,並且配合通入不同的N2與Ar比例,可以成功的得到含有氮成分的合金薄膜。藉著XRD與TEM的分析,可以發現隨著氮含量的不同,薄膜分別會具有奈米晶相或者是非晶相的微結構。
    另外,利用振動樣品磁力計(VSM)以及磁光柯爾效應(MOKE)以及配合磁退火的處理,對所得到的合金薄膜作磁性質的分析,可以發現,不同的氮氣氣體比例所鍍製的薄膜,會有不同的磁性質表現。其飽和磁化量(Ms)與異相性場強度(Hk)的變化量分別為,12.7 kG到 16.9 kG以及22 Oe到55 Oe。再更進一步做高頻性質的量測時,可以得到,當通入氮氣與氬氣的氣體比例為0.4%時,鐵磁薄膜具有最高的共振頻率∼2.5 GHz。
    因此,利用添加氮原子進入原先的多元合金材料系統,並且配合適當的磁退火處理下,可以成功的改善合金磁性質表現,並且顯著的提升其在高頻的應用的範圍。


    Soft magnetic properties with suitable uniaxial anisotropy and high saturation magnetization are required for the high frequency application. In this study, multicomponent Fe-Co-Ni-based soft magnetic thin films were deposited on the Si substrate by RF magnetron sputtering at room temperature. Various nitrogen contents were added during sputtering by adjusting the N2 gas flow. The composition, crystal structure and magnetic domain were analyzed by using electron probe microanalyzer (EPMA), X-ray diffraction (XRD) and magnetic force microscope (MFM), respectively. Without nitrogen doping, the domain of the magnetic thin film was arranged randomly with the thickness around 1μm. The effect of N2 content in the thin film on the magnetic properties was evaluated and further discussed.
    Magnetic properties, including saturation magnetization (Ms), coercivity (Hc) and anisotropy field (Hk), were evaluated with a vibrating sample magnetometer (VSM) and Magneto-Optics Kerr Effect (MOKE). For the as-deposited magnetic thin films, no anisotropy magnetization was observed. However, a distinct uniaxial anisotropy occurred after annealed at 300 °C for 1 hr under 1200 Oe external in-plane magnetic field when the nitrogen was added. The saturation magnetization (Ms) of the as-deposited magnetic thin films without nitrogen doping was about 17 kG, and no anisotropy was revealed after field annealing. In contrast, when the nitrogen was added, the anisotropy field (Hk) increased to 30 Oe, while Ms slightly decreased to 13 kG.
    The high frequency behavior of Fe-Co-Ni-based magnetic thin films was also evaluated. For the ferro-magnetic resonance frequency (fFMR) correlated to the product of Ms and Hk, a value as high as 2.5 GHz was derived for the annealed N2-doped magnetic thin film.

    List of Tables III Figures Caption IV Abstract VII Chapter I Introduction 1 Chapter II Literature 5 2.1 Amorphous alloy 5 2.1.1 Introduction 5 2.1.2 Characteristics of the Amorphous Alloys 6 2.1.3 Soft Magnetic Properties and Application of the Magnetic AmorphousAlloys 7 2.2 Multicomponent Alloy (High Entropy Alloy) 9 2.2.1 Background 9 2.2.2 Characteristic of the Multi-component Alloy 11 2.3 Magnetic Material 14 2.3.1 Magnetic moments of electrons 14 2.3.2 Magnetic domain 17 2.3.3 Size effect to the soft magnetic 18 2.3.4 Application in the microwave component for magnetic material 19 2.4 Magnetic Thin Film Inductor 20 2.4.1 Background 20 2.4.2 Requirements of a magnetic thin film 21 2.4.3 Ferrimagnetism 23 2.4.4 Soft magnetic metal-alloy films 25 2.4.5 Design of magnetic thin film inductor 26 2.4.5.1 Sandwiched spiral/meander 27 2.4.5.2 Planar solenoid 28 2.4.5.3 Sandwich strip 29 2.4.6 Energy loss 31 2.4.6.1 Eddy currents 31 2.4.6.2 Spin dynamics and relaxation 33 Chapter III Experimental Procedure 41 3.1 Target Fabrication 41 3.2 Deposition of Multicomponent Thin Films 42 3.3 Field Annealing 43 3.4 Measurement and Analysis 43 3.4.1 Composition analysis 43 3.4.2 Phase identification 44 3.4.3 Microstructure and magnetic domain structure investigation 44 3.4.4 Evaluation of magnetic properties 45 3.4.4.1 Magnetic-optical Kerr effect (MOKE) 45 3.4.4.2 Vibrating sample measurement (VSM) 46 3.4.4.3 Permeability 47 Chapter IV Results & Discussion 56 4.1 Composition and Microstructure Analysis of the Multicomponent Target 56 4.2 Composition, Microstructure and Magnetic Properties Analysis of High Entropy Magnetic thin films 56 4.2.1 Composition 60 4.2.2 Microstructure and Magnetic Properties 60 4.2.2.1 X-ray Analysis 60 4.2.2.2 Magnetic properties 64 4.3 Magnetic Domain Structure of the As-deposited and Annealed Magnetic Coatings 66 4.3.1 As-deposited Coatings 66 4.3.2 Annealed Coatings 69 4.4 The Influence of Various Nitrogen contents on Magnetic Properties of Multi-component Thin films 75 4.5 High Frequency Behavior Evaluation 80 Chapter V Conclusions 83 References 85

    1. S. Chikazumi, Physics of Magnetism, (1964), 329
    2. D.B. Chrisey, P.C. Dorsey, J.D. Adams, H. Buhay, in: M.H. Francombe (Ed.), Handbook of Thin Film Devices, Vol. 4, (2000), 143
    3. I. Fergen, K. Seemann, A. v. d. Weth, and A. Schppüen, J. Magn. Magn. Mater., 242, (2002), 146
    4. K. Seemann, H. Leiste, and V. Bekker, J. Magn. Magn. Mater., 283, (2004), 310
    5. Gotthard Rieger, Guenther Rupp, Guenther Gieres, Reihard Losehand, Wolfgang Hartung, Wolfram Maass, and Wolfgang Ocker, J. Appl. Phys., 91, (2002), 8447
    6. M. Yamaguchi, Y. Miyazawa, K. Kaminish, H. Kikuchi, S. Yabukami, K. I. Arai, and T. Suzaki, J. Magn. Magn. Mater., 268, (2004), 170
    7. V. Korenivski, and R. B. van Dover, IEEE Trans. Magn., 34, (1998), 1375
    8. V. Korenivski, J. Magn. Magn. Mater., 215-216, (2000), 800
    9. N. X. Sun, and S. X. Wang, J. Appl. Phys., 92, (2002), 1477
    10. A. R. Chezan, C. B. Craus, N. G. Chechenin, L. Niesen, and D. O. Boerma, Phys. Stat. Sol. (a), 189, (2002), 833
    11. T. J. Klemmer, K. A. Ellis, L. H. Chen, B. van Dover, and S. Jin, J. Appl. Phys., 87, (2000), 830
    12. C. H. Lee, D. H. Shin, D. H. Ahn, S. E. Nam, and H. J. Kim, J. Appl. Phys., 85, (1999), 4898
    13. L. H. Chen, H. K. Chen, C. T. Hsieh, Y. H. Shih, I. G. Chen, S. Y. Chen, and H. P. Liu, J. Appl. Phys., 91, (2002), 8450
    14. X. L. Tang, H. W. Zhang, H. Su., and X. D. Jiang, J. Magn. Magn. Mater., 270, (2004), 84
    15. L. Landau, and E. Lifshitz, Phys. Z. Sowjetunion 8, (1935), 8
    16. W. P. Jayasekara, J. A. Bain, and M. H. Kryder, IEEE, 34, (1998),1438
    17. 黃國雄,“等莫耳比多元合金系統之研究”, 國立清華大學材料科學工程研究所碩士論文, 1996.
    18. H. K. Chen, S. H. Li, J. G. Duh, (submitted to JEM, 2005)
    19. 林佩君,”高頻軟磁高熵合金濺鍍薄膜之開發研究”, 國立清華大學材料科學工程 研究所碩士論文, 2003.
    20. A. Inoue, Mater. Trans. Japan. Inst. Metals, 36, p.886, 1995.
    21. A. Inoue, Mater. Sci. Eng., A226-A228, p.357, 1997.
    22. A. Inoue, A. Takeuchi and T. Zhang, Metall. Mater. Trans., 29A, p.1779, 1998.
    23. A. Inoue, “Bulk Amorphous Alloys”, Trans Tech Publications, Zurich, 1999.
    24. A. Inoue and Rae Eun Park, Materials Transactions, JIM, 37, 11, p.1715, 1996.
    25. B. B. Prrasad, T.R. Anantharaman, A. K. Bhatnagar, D. Ganesan and R. Jagannathan, J. Non-crystalline Solids, 61-2, Jan., p.391, 1984.
    26. Carlisle and H. Ben, Machine Design, 58, 1, p24, 1986.
    27. H. Jones, Rapid Solidification of Metals and Alloys, Inst. Of Metallurgists, London, 1982.
    28. P. Haassen, J. Non- Crystalline Solis, 56, 1-3, p191, 1983.
    29. F. G. Yost, J. Mater. Sci., 16, 11, p.3092, 1981.
    30. D .E. Polk and B. C. Giessen, in Rapid Solidification Technology Source Book, ASM. Matals Pard, Ohio, 1983.
    31. A. Makino, A. Inoue, and T. Masumoto, Mater. Trans. JIM, 36, p.924, 1995
    32. Y. Yoshizawa, S. Oguma and K. Yamaguchi, J. Appl. Phys., 64, p.6044, 1988
    33. Y. Yoshizawa, K. Yamaguchi, T. Yamane and H. Sugihara, J. Appl. Phys., 64, p.6047, 1988
    34. Michael E. McHenry*, Matthew A. Willard, David E. Laughlin, Progress in Materials Science, 44, p.291, 1999
    35. T. Miaushi, A. Makino and A. Inoue, IEEE Trans. Magn., 32, p.3784, 1997
    36. Yeh J. W., Chen S. K., Lin S. J., Gan J. Y., Chin T. S., Shun T. T., Tusa C. H. and Chang S. Y., Adv. Eng. Mater., 6, p.299, 2004
    37. 賴高廷,“高亂度合金微結構及性質探討”, 國立清華大學材料科學工程研究所碩士論文, 1998.
    38. 許雲翔,“以FCC及BCC元素為劃分配製等莫耳多元合金系統之研究”, 國立清華大學材料科學工程研究所碩士論文, 2000.
    39. 陳家裕,“塗層用高熵合金之開發”, 國立清華大學材料科學工程 研究所碩士論文, 2002.
    40. B. D. Cullity, Introduction to Magnetic Materials, Indiana, 1972
    41. Sushin Chikazami, Physics of Magnetism, John Wiliey & Sons Inc., chapter 3, 1964
    42. Weiss Pierre, J. de Physique, 6, p.661, 1907
    43. Weiss Pierre, J. Compt. Rend., 143, p.1136, 1906
    44. Herzer G., in Handbook of Magnetic Materials, ed. Buschow, K.H.J., V. 10, Chap. 3, p.415, 1997
    45. Herzer G., Magnetics, IEEE Trans. Magn., 26, 5, p.1397, 1990
    46. M. E. Mchenry and D. E. Laughlin, Acta. Mater., 48, p.223, 2000
    47. 唐敏注,”通訊用軟磁材料之特性及應用”,工業材料105期,p.42, 1995.
    48. N. Saleh, A. H. Qureshi, Electron. Lett., 6, p850, 1970
    49. V. Korenivski, J. Magn. Magn. Mater., 215 –216, p.800, 2000.
    50. J.Y. Park, L.K. Lagorce, M.G. Allen, IEEE Trans. Magn., 33, p.3322, 1997
    51. W.G. Hurley, M.C. Duffy, S. O'Reilly, S.C. O'Mathuna, Impedance formulas for planar magnetic structures with spiral windings, IEEE Power Electronics Specialists Conference, PESC'97 Record, Vol. 1, 1997, p. 627.
    52. C.M. Williams, M. Abe, T. Itoh, P. Lubitz, IEEE Trans. Magn., 30, p.4896, 1994
    53. I. Zaquine, H. Benazizi, J.C. Mage, J. Appl. Phys., 64, p.5822, 1988
    54. V. Korenivski, R.B. van Dover, Y. Suzuki, E.M. Gyorgy, J.M. Phillips, R.J. Felder, J. Appl. Phys., 79, p.5926, 1996
    55. Y. Suzuki, R.B. van Dover, E.M. Gyorgy, J.M. Phillips, V. Korenivski, D.J. Werder, C.H. Chen, R.J. Cava, J.J. Krajewski Jr., W.F. Peck, K.B. Do, Appl. Phys. Lett., 68, p.714, 1996
    56. Y. Suzuki, R.B. van Dover, E.M. Gyorgy, J.M. Phillips, R.J. Felder, Phys. Rev., B53, p.14016, 1996
    57. B. Viala, M.K. Minor, J.A. Barnard, J. Appl. Phys., 80, p.3941, 1996
    58. S. Jin, W. Zhu, R.B. van Dover, T.H. Tiefel, V. Korenivski, L.H. Chen, Appl. Phys. Lett., 70, p.3161, 1997
    59. S. Ohnuma, H. Fujimori, S. Furukwa, S. Mitani, T. Masumoto, Alloys Compounds, 222, p.167, 1995
    60. K. Shirakawa, IEEE Transl. J. Magn. Japan 9, 116,61,76, 1994
    61. C.H. Lee, D.H. Shin, D.H. Ahn, S.E. Nam, H.J. Kim, J. Appl. Phys., 85,4898, 1999
    62. M. Yamaguchi, K. Suezawa, K.I. Arai, Y. Takahashi, S. Kikuchi, Y. Shimada, W.D. Li, S. Tanabe, K. Ito, J. Appl. Phys., 85, p.7919, 1999
    63. A. Inoue,Y. Shimohra, J. S. Gook, Mat. Trans. JIM., p.36, 1427, 1995.
    64. R. F. Soohoo, IEEE Trans. Magn., MAG-15, p.1803, 1970
    65. M. Yamaguchi, S. Arakawa, H. Ohzeki, Y.Hayashi and K. I. Arai, IEEE Trans. Magn., 28, p.3015, 1992
    66. M. Yamaguchi, M. Baba and K. I. Arai, IEEE Trans. Microw. Theory, 49, p.2331, 2001
    67. V. Korenivski, R.B. van Dover, J. Appl. Phys., 82, p.5247, 1997
    68. O. Oshiro, H. Tsujimoto, K. Shirae, IEEE Transl. J. Magn. Japan 6,p.436, 1991
    69. A. Gromov, V. Korenivski, K.V. Rao, R.B. van Dover, P.M. Mankiewich, IEEE Trans. Magn., 34, p.1246, 1998
    70. A. Gromov, V. Korenivski, D. Haviland, R.B. van Dover, J. Appl. Phys., 85, p.5202, 1999
    71. H. Suhl, IEEE Trans. Magn., 34, p.1834, 1998
    72. N.S. Almeida, D.L. Mills, Phys. Rev. B, 53, p.12232, 1996
    73. A. Sukstanskii, V. Korenivski, J. Magn. Magn. Mater., 218, p.144, 2000
    74. R.D. McMichael, M.D. Stiles, P.J. Chen, W.F. Egelhoff Jr., J. Appl. Phys., 83, p.7037, 1998
    75. A. Sukstanskii, V. Korenivski and A. Gromov, J. Appl. Phys., 89, p.755, 2001
    76. J. I. Goldstein, D. E. Newbury, P.Echlin, D.C. Joy, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press, (1981)
    77. M. Yamaguchi, O. Acher, Y. Miyazawa, K. I. Arai, and M. Ledieu, J. Magn. Magn. Mater., 242, (2002), 970
    78. D. Pain, M. Ledieu, O. Acher, A. L. Adenot, and F. uverger, J. Appl. Phys., 85, (1999), 5151
    79. R. Alben, J. J. Becker and M. C. Chi, “Random anisotropy in amorphous ferromagnets”, Journal of Applied Physics, 49 (3), 1653 (1978)
    80. T. K. Kim and M. Takahashi, Appl. Phys. Lett., 20, (1972), 492
    81. A. Wold, R. Arnott, and N. Menyuk, J. Phys. Chem. Solids, 65, (1961), 1068
    82. H. Naganuma, R. Nakatani, Y. Endo, Y. Kawamura, and M. Yamamto, Science and Technology of Advanced Materials., 5, (2004), 101
    83. D. Spenato, A. Fessant, J. Gieraltowski, H. Le Gall, and C. Tannous, J. Appl. Phys., 85, (1999), 6010

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE