研究生: |
王崇任 Wang, Chung-Ren |
---|---|
論文名稱: |
由 Pyrococcus furiosus Argonaute 介導的 B 組鏈球菌檢測 Group B Streptococcus detection mediated by Pyrococcus furiosus Argonaute |
指導教授: |
徐瑞洲
Hsu, Jui-Chou |
口試委員: |
張晃猷
Chang, Hwan-You 彭慧玲 Peng, Hwei-Ling |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 32 |
中文關鍵詞: | Ago蛋白質 、B 組鏈球菌 、基因檢測 |
外文關鍵詞: | Argonaute, Renewed-gDNA Assisted DNA cleavage by Argonaute, Group B Streptococcus |
相關次數: | 點閱:23 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Argonaute (Ago) 蛋白是一種蛋白質家族,存在於原核以及真核生物中,是負責作用於基因調控、外來物質免疫反應的重要蛋白。 在嗜熱細菌中,Ago 蛋白擁有識別並切割去氧核醣核酸分子的能力,這對細菌本身的基因調控、免疫反應和病毒防禦很重要。根據先前的研究,Ago蛋白在醫學方面有廣泛的應用潛力,例如應用於基因治療和檢測。 其中RADAR(Renewed-gDNA Assisted DNA cleavage by Argonaute)是一種新型Ago蛋白所媒介的檢測方法。此Ago蛋白亦有潛力去實現高效、高精度的基因治療。
在本研究中,我們以GBS(B 組鏈球菌)中用於編碼 CAMP 因子的 Cfb基因,做為我們檢測的目標。GBS菌會透過母體傳染給胎兒並造成致命性的新生兒敗血症。檢測方法是透過使用 PfAgo 介導的檢測,我們首先表達 PfAgo並驗證了PfAgo核酸內切酶活性。為了檢測Cfb基因,我們設計了三組gDNA,並測試出其中的G2是功能性最優秀的。此外,我們在實驗過程中亦發現若gDNA引導PfAgo切割結果為Blunt端,切割效率會比切割出粘性端差。以及當靶向不同長度的目標基因時,同一組 gDNA 引導的切割效率會有所不同。
最後,我們使用PfAgo的兩步驟切割,並進行了涉及八個與 GBS 無關的基因組以及來自不同來源的九個不同 GBS 基因組的實驗。並利用電泳或是帶有螢光的基因來顯示檢驗的結果。我們在反應中成功區分了正、負兩個組別,達到提高檢測B 組鏈球菌能力以及提高檢測特異性與準確性的目的。
Argonaute (Ago) proteins are a family of proteins that exist in both prokaryotic and eukaryotic organisms and play crucial roles in gene regulation and immune responses to foreign substances. In thermophilic bacteria, Ago proteins have the ability to recognize and cleave DNA molecules, which is important for bacterial gene regulation, immune responses, and viral defense. Previous studies have indicated the wide potential applications of Ago proteins in the medical field, such as gene therapy and detection. One novel detection method mediated by Ago proteins is RADAR (Renewed-gDNA Assisted DNA cleavage by Argonaute), which has the potential to achieve efficient and precise gene therapy.
In this study, we targeted the Cfb gene encoding the CAMP factor in Group B Streptococcus (GBS) as our detection target. GBS can be transmitted from the mother to the fetus, causing life-threatening neonatal sepsis. The detection method involved the use of PfAgo-mediated detection. We first expressed PfAgo and validated its endonuclease activity. To detect the Cfb gene, we designed three sets of gDNA and found that G2 exhibited the best functional performance. Additionally, during the experiment, we observed that if gDNA guides PfAgo to cleave resulting in blunt ends, the cutting efficiency is lower compared to guiding the cleavage to produce sticky ends. Moreover, the cutting efficiency of the same set of gDNA guides varied when targeting different lengths of target genes.
Last but not least, we conducted experiments involving eight genomes unrelated to GBS and nine different GBS genomes from different sources using PfAgo two-step cleavage. The results were displayed through gel electrophoresis or fluorescently labeled genes. We successfully distinguished the positive and negative groups in the reaction, achieving the goal of improving the detection capability, specificity, and accuracy for GBS detection.
1. Asmaa tazi, olivier disson, & Claire poyart. (2010). The Surface Protein HvgA Mediates Group B Streptococcus Hypervirulence and Meningeal Tropism in Neonates. J Exp Med, 207(11), 2313–2322. https://doi.org/10.1084/jem.20092594
2. Behnam enghiad. (2020). DEVELOPMENT AND APPLICATIONS OF PROGRAMMABLE DNA-GUIDED ARGONAUTE-BASED ARTIFICIAL RESTRICTION ENZYMES. University of Illinois at Urbana-Champaign.
3. Carol j. baker, & Morven s. edwards. (1988). Group B Streptococcal Infections. Clinical Chemistry, 549(1), 193–202. https://doi.org/10.1111/j.1749-6632.1988.tb23972.x
4. Danbing ke, Christian ménard, & Michel g bergeron. (2000). Development of Conventional and Real-Time PCR Assays for the Rapid Detection of Group B Streptococci. Clinical Chemistry, 46(3), 324–331. https://doi.org/10.1093/clinchem/46.3.324
5. Daan c. swarts, , Jorrit w. hegge, ismael hinojo, , Masami shiimori, , & Michael a. ellis. (2015). Argonaute of the Archaeon Pyrococcus Furiosus Is a DNA-Guided Nuclease That Targets Cognate DNA. Nucleic Acids Research, 43(10), 5120–5129. https://doi.org/10.1093/nar/gkv415
6. Daan c swarts, kira makarova, & john van der oost. (2014). The Evolutionary Journey of Argonaute Proteins. Nature Structural & Molecular Biology, 21, 743–753. https://doi.org/10.1038/nsmb.2879
7. Fei wang, Jun yang, & Lixin ma . (2021). PfAgo-Based Detection of SARS-CoV-2. Biosensors and Bioelectronics, 177, 112932. https://doi.org/10.1016/j.bios.2020.112932
8. Fabiola v rivas, niraj h tolia, & leemor joshua-tor. (2005). Purified Argonaute2 and an SiRNA Form Recombinant Human RISC. Nature Structural & Molecular Biology, 12, 340–349. https://doi.org/10.1038/nsmb918
9. Gyorgy hutvagner , & Martin j. simard . (2008). Argonaute Proteins: Key Players in RNA Silencing. Nature Reviews Molecular Cell Biology, 9, 22–32. https://doi.org/10.1038/nrm2321
10. Gunter meister. (2013). Argonaute Proteins: Functional Insights and Emerging Roles. Nature Reviews Genetics, 14, 447–459. https://doi.org/10.1038/nrg3462
11. Guanhua xun, Stephan thomas lane, & Huimin zhao. (2021). A Rapid, Accurate, Scalable, and Portable Testing System for COVID-19 Diagnosis. Nature Communications, 12, 2905. https://doi.org/10.1038/s41467-021-23185-x
12. Jinzhao song, Jorrit w hegge, & Haim h bau. (2020). Highly Specific Enrichment of Rare Nucleic Acid Fractions Using Thermus Thermophilus Argonaute with Applications in Cancer Diagnostics. Nucleic Acids Research, 48(4), e19. https://doi.org/10.1093/nar/gkz1165
13. Kelley s. yan, sherry yan, & ming-ming zhou. (2003). Structure and Conserved RNA Binding of the PAZ Domain. Nature, 426, 469–474. https://doi.org/10.1038/nature02129
14. Kira s makarova, Yuri i wolf, & Eugene v koonin. (2009). Prokaryotic Homologs of Argonaute Proteins Are Predicted to Function as Key Components of a Novel System of Defense against Mobile Genetic Elements. Biology Direct, 4(29). https://doi.org/10.1186/1745-6150-4-29
15. Lasse peters, & gunter meister. (2007). Argonaute Proteins: Mediators of RNA Silencing. Molecular Cell, 26(5), 611–623.
https://doi.org/10.1016/j.molcel.2007.05.001
16. Laura c. c. cook, Hong hu, Mark maienschein-cline, & Michael j. federle. (2018). A Vaginal Tract Signal Detected by the Group B Streptococcus SaeRS System Elicits Transcriptomic Changes and Enhances Murine Colonization. Infection and Immunity, 86(4). https://doi.org/10.1128/iai.00762-17
17. Lidiya lisitskaya, alexei a. aravin, & andrey kulbachinskiy. (2018). DNA Interference and beyond: Structure and Functions of Prokaryotic Argonaute Proteins. Nature Communications, 9, 5165. https://doi.org/10.1038/s41467-018-07449-7
18. Lei chang, Gang sheng, & Yujie sun. (2019). AgoFISH: Cost-Effective in Situ Labelling of Genomic Loci Based on DNA-Guided DTtAgo Protein. Nanoscale Horiz., 4, 918–923. https://doi.org/10.1039/C9NH00028C
19. Melanie abeyta, Gail g. hardy, & Janet yother. (2003). Genetic Alteration of Capsule Type but Not PspA Type Affects Accessibility of Surface-Bound Complement and Surface Antigens of Streptococcus Pneumoniae. Infection and Immunity, 71(1), 218–225. https://doi.org/10.1128/iai.71.1.218-225.2003
20. Mary e. hensler, darin quach, chia-jun hsieh , kelly s. doran, & victor nizet. (2008). CAMP Factor Is Not Essential for Systemic Virulence of Group B Streptococcus. Microbial Pathogenesis, 44(1), 84–88. https://doi.org/10.1016/j.micpath.2007.08.005
21. Michelle l. korir, david knupp, & Kathryn lemerise. (2014). Association and Virulence Gene Expression Vary among Serotype III Group B Streptococcus Isolates Following Exposure to Decidual and Lung Epithelial Cells. Infection and Immunity, 82(11), 4587 – 4595. https://doi.org/10.1128/iai.02181-14
22. Manuel rosa-fraile, & Barbara spellerberg. (2017). Reliable Detection of Group B Streptococcus in the Clinical Laboratory. Journal of Clinical Microbiology, 55(9), 2592–2598. https://doi.org/10.1128/jcm.00582-17
23. Marwa fouad, & Hasan aboul-atta. (2018). DETECTION OF MATERNAL COLONIZATION OF GROUP B STREPTOCOCCUS BY PCR TARGETING Cfb AND ScpB GENES. Journal of Microbiology, Biotechnology and Food Sciences, 6(1), 713–716.
https://doi.org/10.15414/jmbfs.2016.6.1.713-716
24. Mallory b. ballard, Vicki mercado-evans, Madelynn g. marunde, Hephzibah nwanosike, & Jacob zulk. (2021). Group B Streptococcus CAMP Factor Does Not Contribute to Interactions with the Vaginal Epithelium and Is Dispensable for Vaginal Colonization in Mice. Microbiology Spectrum, 9(3). https://doi.org/10.1128/Spectrum.01058-21
25. Qian liu, Xiang guo, & Yan feng. (2021). Argonaute Integrated Single-Tube PCR System Enables Supersensitive Detection of Rare Mutations. Nucleic Acids Research, 49(13), e75. https://doi.org/10.1093/nar/gkab274
26.
27. Ruyi he, Longyu wang, & Lixin ma. (2019). Pyrococcus Furiosus Argonaute-Mediated Nucleic Acid Detection. Chem. Commun., 55, 13219–13222. https://doi.org/10.1039/C9CC07339F
28. Schrag, S., Gorwitz, R., Fultz-Butts, K., & Schuchat, A. (2002). Prevention of perinatal group B streptococcal disease. Revised guidelines from CDC. MMWR. Recommendations and reports : Morbidity and mortality weekly report. Recommendations and reports, 51(RR-11), 1–22.
29. Shannon d. manning, David w. lacher, & H. dele davies. (2005). DNA Polymorphism and Molecular Subtyping of the Capsular Gene Cluster of Group B Streptococcus. Journal of Clinical Microbiology, 43(12), 6113 – 6116. https://doi.org/10.1128/jcm.43.12.6113-6116.2005
30. Sergei ryazansky, Andrey kulbachinskiy, & Alexei a. aravin. (2018). The Expanded Universe of Prokaryotic Argonaute Proteins. MBio, 9(6). https://doi.org/10.1128/mbio.01935-18
31. T. bogiel, D. depka, & E. gospodarek-komkowska. (2021). Application of the Appropriate Molecular Biology-Based Method Significantly Increases the Sensitivity of Group B Streptococcus Detection Results. Journal of Hospital Infection, 112, 21–26. https://doi.org/10.1016/j.jhin.2021.03.008
32. Verani JR, McGee L, and Schrag SJ. 2010. Prevention of perinatal group B streptococcal disease–revised guidelines from CDC. MMWR Recomm Rep59(RR-10):1–36.
33. Weiran chen , Liyang qiu , & Yuan wang. (2023). Novel Nucleic Acid Detection for Human Parvovirus B19 Based on Pyrococcus Furiosus Argonaute Protein. Viruses, 15(3), 595. https://doi.org/10.3390/v15030595
34. Xun, g., & Liu, q. (2021). Argonaute with Stepwise Endonuclease Activity Promotes Specific and Multiplex Nucleic Acid Detection. Bioresour. Bioprocess. Bioresour. Bioprocess., 8(46). https://doi.org/10.1186/s40643-021-00401-6
35. Yuqing qin , Yingjun li, & Yonggang hu. (2022). Emerging Argonaute-Based Nucleic Acid Biosensors. Trends in Biotechnology, 40(8), 910–914. https://doi.org/10.1016/j.tibtech.2022.03.006
36.
37. Yulia schindler, galia rahav & israel nissan. (2023). Group B Streptococcus Virulence Factors Associated with Different Clinical Syndromes: Asymptomatic Carriage in Pregnant Women and Early-Onset Disease in the Newborn. Front. Microbiol., 14. https://doi.org/10.3389/fmicb.2023.1093288
38. Timothy barkham, ruth n zadoks, & swaine l chen. (2019). One Hypervirulent Clone, Sequence Type 283, Accounts for a Large Proportion of Invasive Streptococcus Agalactiae Isolated from Humans and Diseased Tilapia in Southeast Asia. PLoS Negl Trop Dis., 13(6), e0007421. https://doi.org/10.1371/journal.pntd.0007421
39. Towers, C. V., Rumney, P. J., Asrat, T., Preslicka, C., Ghamsary, M. G., & Nageotte, M. P. (2010). The accuracy of late third-trimester antenatal screening for group B streptococcus in predicting colonization at delivery. American journal of perinatology, 27(10), 785–790. https://doi.org/10.1055/s-0030-1254237