研究生: |
陳柏霖 Chen, Po-Lin |
---|---|
論文名稱: |
快速測試整合:建構於IEEE 1500標準測試封套介面之SOC內嵌式多重時脈之隨差即用延遲錯誤測試系統 Fast Test Integration: Toward Plug-and-Play Embedded At-speed Test Framework for Multiple Clock Domains in System-On-Chips Based on IEEE Standard 1500 |
指導教授: |
張慶元
Chang, Tsin-Yuan |
口試委員: |
張慶元
張彌彰 劉靖家 陳竹一 李進福 鄭經華 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 93 |
中文關鍵詞: | at-speed testing 、delay testing 、SoC testing 、IEEE 1500 、multiple clock domain |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Rapid advances in semi-conductor technology have made timing-related defects increasingly crucial in core-based system-on-chip designs. Currently, modular test strategies based on IEEE std.1500 are applied to test the functionality of each embedded core in SOC designs but fail to verify the corresponding timing specifications. To achieve high quality of delay tests, hardware implementation of an embedded at-speed (delay) test framework including the modified test wrappers and the Embedded At-speed (delay) test Mechanism is presented to build an entirely embedded at-speed (delay) test environment where at-speed clock is applied inside the chip to increase test accuracy. The proposed at-speed (delay) test framework is also capable of supporting all current solutions of core-based delay test. The experimental results successfully demonstrate the delay testing application for single clock domain using the proposed framework to a Crypto Processor with satisfying test quality and effectiveness.
However, current design strategies which integrated blocks operating different clock frequencies still may exposes designs even with aforementioned at-speed (delay) test framework to severe reliability loss due to incomplete at-speed testing which is induced by ignorance of timing-related defects between clock domains. Further, the reduced testability caused by core-based design strategy also aggravates the difficulty in applying on-chip at-speed testing. Although previous works were able to successfully increase the quality of the at-speed testing for single clock, defects between clock domains still remain undiscovered and the diversity of on-chip clock control schemes from different components may complicate the test integration, increasing the test costs. Therefore, to accelerate the time-to-market and the time-to-volume, the development of a Plug-and-Play at-speed testing based on a well-defined test interface has become increasingly urgent. In this dissertation, a fast test integration approach for multi-clock-domain at-speed testing based on IEEE Standard 1500 is proposed. The proposed framework has been successfully integrated into an IEEE 1500-wrapped ultra-wide-band design and a simple SOC design. Experiment results also confirm the feasibility of the proposed approach. And to achieve “Fast-Test-Integration”, an automation tool has also been established.
隨著製程技術的不斷提升,晶片速度持續攀高,與時序(timing)相關的延遲缺陷(delay defects),例如電阻短路、電阻斷路或者是訊號完整性問題,也逐漸了主宰晶片測試的品質(test quality)。然而,以傳統偵測定值錯誤(Stuck-at fault)為主流的測試方法並無法有效的檢測出時序相關的延遲缺陷,因此無法驗證晶片是否能夠操作在設計規格(design specifications)所規範的功能時脈速度(functional clock speed) 。單單依靠傳統定值錯誤測試不僅僅降低測試效率也額外增加測試負擔與成本(test cost)。因此,為解決時序相關的延遲缺陷所導致的後段測試的困難,半導體業界發展出相對應單一時脈域(single clock domain)延遲錯誤測試(delay fault test)或者稱全速測試(at-speed test)來針對單一頻率待測電路的延遲錯誤測試。然而,製程技術的快速發展也促使系統晶片(System-on-Chip)的設計策略得以整合多顆具有高效能、多重時脈(multiple clock domain)的設計於其中。跨頻域CDC (Clock Domain Crossing)的資料傳輸模式也促使延遲錯誤測試必須從原本單一時脈域的延遲測試延伸至多重時脈域且跨時脈域的延遲錯誤測試,以確保整體延遲錯誤測試的品質。
然而,針對高速且多重時脈域的系統晶片的延遲錯誤測試已非傳統低階自動測試機台(Automatic Test Equipment)所能支援,因此,內嵌式可支援延遲錯誤測試的可測性設計(Design-for-Testability)變得相當重要與熱門,尤其在SOC設計模式的考量下,所有的邏輯電路皆內嵌在其中,無法由chip level的I/Os所控制與觀察,如何在chip內部執行多重時脈域的延遲錯誤測試,變得困難重重。雖然由美國電子電機工程師學會(Institute of Electrical and Electronic Engineers, IEEE)所提出模組化的系統晶片測試標準(IEEE Standard 1500)來對SOC中內嵌的邏輯電路(embedded cores)作有效的測試,但是並無提供任延遲測試相關之解決方案。因此,如何針對現有IEEE 1500所規範的測試標準之下,提出具有低面積開銷(low area overhead)、強健性(robustness)、且具有支援多重時脈域延遲錯誤測試的內嵌可測性設計來提升整體延遲錯誤測試的測試品質及可靠度並且降低測試成本為現階段提升系統晶片測試品質非常重要的部份。
[1] E. J. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M. Lousberg, and C. Wouters, “A Structured And Scalable Mechanism for Test Access to Embedded Reusabe Cores,” in Proc. IEEE Int’l Test Conf. (ITC) , Oct. 1998, pp. 284-293.
[2] P. Varma and S. Bhatia, “A Structured Test Re-Use Methodology for Core-Based System Chips,” in Proc. IEEE Int’l Test Conf. (ITC) , Oct. 1998, pp. 294-302.
[3] E. J. Marinissen, S. K. Goel, and M. Lousberg, “Wrapper Design for Embedded Core Test,” in Proc. IEEE Int’l Test Conf. (ITC), Oct. 2000, pp. 911-920.
[4] Q. Xu and N. Nicolici, “Delay Fault Testing of Core-Based Systems-on-a-Chip,” in Proc. Conf. Design, Automation, and Test in Europe (DATE), Mar. 2003, pp. 744-749.
[5] IEEE Standard Testability Method for Embedded Core-based Integrated Circuits, IEEE Standard 1500,2005.
[6] G. Palumbo, F. Pappalardo, and S. Sannella, “Evaluation on Power Reduction Applying Gated Clock Approaches,” in Proc. IEEE Int’l Symp. on Circuits and Systems (ISCAS), vol. 4, May 2002, pp. 85-88.
[7] S. Agarwala , P. Wiley , A. Rajagopal , A. Hill , R. Damodaran , L. Nardini , T. Anderson , S. Mullinnix , J. Flores , H. Yue , A. Chachad , J. Apostol , K. Castille , U. Narasimha , T. Wolf , N. S. Nagaraj , M. Krishnan , L. Nguyen , T. Kroeger , M. Gill , P. Groves , B. Webster , J. Graber and C. Karlovich , “A 800 MHz system-on-chip for wireless infrastructure applications,” in Proc. Int’l Conf. on VLSI design, 2004, pp. 381-389.
[8] J. Bower, “A system-on-a-chip for audio encoding,” in Proc. Int’l Symp. on System-on-Chip, Nov. 2004, pp. 149-155.
[9] A.K. Khan, H. Magoshi, T. Matsumoto, J. Fujita, M. Furuhashi, M. Imai, Y. Kurose, M. Sato, K. Sato, Y. Yamashita, Kinying Kwan, Duc-Ngoc Le, J.H. Yu, Trung Nguyen, S. Yang, A. Tsou, K. Chow, J. Shen, Min Li, Jun Li, Hong Zhao, K. Yoshida, “A 150-MHz graphics rendering processor with 256-Mb embedded DRAM,” IEEE Journal of Solid-State Circuits, Nov. 2001, pp. 1775-1784.
[10] P.J. Bricaud, “IP reuse creation for system-on-a-chip design,” in Proc. IEEE Custom Integrated Circuits, pp.395-401, May 1999.
[11] I. ARM Components, AMBA Specification Rev2.0, May 1999.
[12] C.-P. Su, T.-F. Lin, C.-T. Huang, and C.-W. Wu, “A high-throughput low-cost AES processor,” IEEE Communications Magazine, vol. 41, Dec. 2003, pp. 86–91.
[13] M.-Y. Wang, C.-P. Su, C.-T. Huang, and C.-W. Wu, “An HMAC processor with integrated SHA-1 and MD5 algorithms,” in Proc. Asia and South Pacific Design Automation Conf. (ASPDAC), Jan. 2004, pp. 456–458.
[14] M.-C. Sun, C.-P. Su, C.-T. Huang, and C.-W. Wu, “Design of a scalable RSA and ECC crypto-processor,” in Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC), Jan. 2003, pp. 495–498.
[15] C.-W. Wang, J.-R. Huang, K.-L. Cheng, H.-S. Hsu, C.-T. Huang, C.-W. Wu, and Y.-L. Lin, “A test access control and test integration system for system-on-chip,” in Proc. IEEE Int’l Workshop on Testing Embedded Core-Based System-Chips (TECS), May 2002, pp. P2.1-P2.8.
[16] P.-L. Chen, H.-H. Chiu, and T.-Y. Chang, “A New Delay Fault Testing Framework on Core-Based System-on-a-Chip, ” in Proc. Workshop on RTL and High Level Testing, Nov. 2006, pp. P33-40.
[17] V. Iyengar, T. Yokoda, K. Yamada, T. Anemikos, B. Bassett, M. Degregorio, R. Farmer, G. Grise, M, Johnson, D. Milton, M. Taylor, F. Woytowich, “At-Speed Structural Test For High-Performance ASICs,” in Proc. IEEE Int’l Test Conf. (ITC), Oct. 2006, pp. 1-10.
[18] Q. Xu and N. Nicolici, “DFT Infrastructure for Broadside Two- Pattern Test of Core-Based SOCs,” IEEE trans. on Computers, vol. 55, no. 4, pp. 470-485, Apr. 2006.
[19] C.-Y. Lo, C.-H. Wang, K.-L. Cheng, J.-R. Huang, C.-W. Wang, S.-M. Wang, C.-W. Wu, “STEAC: A Platform for Automatic SOC Test Integration”, IEEE trans. on Very Large Scale Integration (VLSI) Systems, vol. 15, no. 4, pp. 541-545, May 2007.
[20] E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “ITC’02 SOC Test Benchmarks Web Site,” http://www.hitech-projects.com/itc02SoCbenchm/, 2006.
[21] X. Lin, R. Pres, J. Rajski, P. Reuter, T. Rinderknecht, B. Swanson, and N. Tamarapalli, “High-Frequency, At-speed Scan Testing”, IEEE Design & Test of Computers, vol. 20, no. 5, pp. 17-25, 2003.
[22] M. Beck, O. Barondeau, F. Poehl, and X. Lin, “Measures to Improve Delay Fault Testing on Low-Cost Testers – A Case Study,” in Proc. VLSI Test Symp. (VTS), Apr. 2005, pp. 223-228.
[23] S. Wang, X. Liu and S.T. Chakradhar, “Hybrid Delay Scan: A Low Hardware Overhead Scan-Based At-speed (delay) test Technique for High Fault Coverage and Compact Test Sets,” in Proc. Design, Automation, and Test in Euro conf. (DATE), Mar. 2004, pp 1296-1301.
[24] N. Ahmed, M. Tehranipoor, C. P. Ravikumar, and K. Butler, “Local At-Speed Scan Enable Generation for Transition Fault Testing Using Low-Cost Testers, ” IEEE trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 5, pp. 896-906, May 2007.
[25] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test Wrapper and Test Access Mechanism Co-optimization for System-on-Chip,” in Proc. Int. Test Conf. (ITC), Oct. 2001, pp 1023-1032.
[26] V.Iyengar, K. Chakrabarty, and E. J. Marinissen, ”On Using Rectangle Packing for SoC wrapper/TAM Co-optimization,” in Proc. IEEE VLSI Test Symp. (VTS), Apr. 2002, pp 253-258.
[27] C.-P. Su and C.-W. Wu, “Graph-based Power-Constrained test scheduling for SOC,” in Proc. IEEE Int. Workshop on Design and Diagnostics of Electronic Circuits and Systems (DDECS), Apr. 2002, pp 61-68.
[28] Z. Zhuo, S.M. Reddy, and I. Pomeranz, “Waring: Launch off Shift Tests for Delay Faults May Contribute to Test Escape”, in Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC, Jan. 2007, pp817-822.
[29] Z. Zhuo, S.M. Reddy, I. Pomeranz, X. Lin, and J. Rajski, “Scan Test with Multiple Faults Activation Cycles for Delay Faults ”, in Proc. VLSI Test Symp. (VTS), Apr. 2006, pp. 343-348.
[30] N. Tendolkar, D. Belete, A. Razdan, H. Reyes, B. Schwarz, and M. Sullivan, “Test Methodology for Freescale’s High Performance 3600 Core Based on PowerPC Instruction Set Architecture” in Proc. IEEE Int’l Test Conf. (ITC) , Nov. 2005.
[31] M. Benabdenbi, W. Maroufi, and M. Marzouki, “Test TAPed Cores and Wrapped Cores with The Same Test Access Mechanism”, in Proc. Conf. Design, Automation, and Test in Europe (DATE), Mar. 2001, pp. 150-155.
[32] Y.-S. Wang, L.-Y. Xiao, J.-X. Wang, and Y.-Z. Ye, “Test Control of TAM-Bus: A Solution for Testing SOC”, in Proc. 5th Int’l Conf. on ASIC, Oct. 2003, pp. 1124-1127.
[33] M. Keating and P. Bricaud, “Reuse Methodology manual”, 3rd edition, 1998; Kluwer Academic Publishers.
[34] X.lin, R. Press, J.Rajski, P. Reuter, T.Rinderknecht, B. Swanson, and N. Tamarapalli, “High-Frequency, At-Speed Scan Testing,” IEEE Design & Test of Computer, vol. 20, no. 5, pp. 17-25, Oct. 2003
[35] R. Madge, B.R. Benware, and W.R. Daasch, “Obtaining High Defect Coverage for Frequency-Dependent Defects in Complex ASICs,” IEEE Design & Test of Computers, vol. 02, no. 5, pp. 46-53, Oct. 2003.
[36] S. Pateras, “Achieving At-Speed Structural Test,” IEEE Design & Test of Computers, vol. 20, n0. 5, pp.26-33, Oct. 2003.
[37] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures: Design for testability, 2006; Elsevier.
[38] P.-L Chen, J.-W Lin, H,-H Chiu, and T.-Y Chang, “A Smart Delay Testing Framework based-on IEEE 1500”, presented at 12th IEEE European Test Symp. (ETS), May. 2007.
[39] Q. Xu, and N. Nicolici, “Wrapper Design for Multifrequency IP Cores,” IEEE Trans. Very Large Scale Integer. (VLSI) Syst., vol. 13, no. 6, pp. 678-685, Jun. 2005.
[40] S.K. Goel, and E.J. Marinissen, “Control-Aware Test Architecture Design for Modular SOC Testing,” Proc. IEEE European Test Workshop (ETW), May 2003, pp. 57-62.
[41] P.-L Chen, C.-W Lin and T.-Y Chang, “IEEE Standard 1500 Compatible At-speed (delay) test Framework,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, No. 8, pp. 1152-1156, Aug. 2009
[42] H. Yi, J. Song, and S. Park, “Interconnect Delay Fault Test on Boards and SoCs with Multiple Clock Domains,” Proc. of IEEE Int’l Test Conf.(ITC), Oct. 2006, pp. 1-7.
[43] M. Beck; O. Barondeau; M. Kaibel; F. Poehl; Xijiang Lin; R. Press, “Logic Design for On-Chip Test Clock Generation-Implementation Details and Impact on At-speed (delay) test Quality,” Proc. of the Design, Automation and Test in Europe Conference and Exhibition (DATE), Mar. 2005, pp. 56-61.
[44] H. Furukawa, X. Wen and L. T. Wang, B. Sheu, Z. Jiang and S. Wu, “A Novel and Practical Control Scheme for Inter-Clock At-Speed Testing,” Proc. of IEEE Int’l Test Conf. (ITC), Oct. 2006, pp. 1-10.
[45] X. -X Fan, Y Hu and L. -T Wang, “An On-Chip Test Clock Control Scheme for Multi-Clock At-Speed Testing,” Proc. of IEEE Asia Test Symposium, Nov. 2007, pp. 341-346.
[46] “Clock Domain Crossing”, Cadence Design Systems, Inc.,2004.
[47] X.Lin, R. Press, J. Rajski, P. Reuter, T. Rinderknecht, B. Swanson, and N. Tamarapalli, “High-Frequency, At-Speed Scan Testing,“ IEEE Design & Test of Computers, pp. 17-25, Vol. 20, No. 5, 2003
[48] M. Beck, O. Barondeau, F. Poehl, and X. Lin, “Measures to Improve Delay Fault Testing on Low-Cost Tester – A Case Study,” Proc. VLSI Test Symp., Apr. 2005, pp. 223-228.
[49] L.-T. Wang, X. Wen, B.-C, Hsu, S. Wu, and J. Guo, “A flexible Logic BIST Scheme for Multiple-Clock Circuits,“ Proc. Intl. Conf. on Computer Design, 2005, pp. 475-478.
[50] Synopsys TetraMax ATPG Methodology Backgrounder, www.synopsys.com/products/test/tetrasmax_wp.html
[51] E. J. Marinissen, and Y. Zorian, “IEEE Std 1500 Enables Modular SoC Testing,” IEEE Design & Test of Computers, pp. 8-16, Vol. 26, No. 1, 2009.
[52] B. Nadeau-Dostie, S. M.I. Adham, and R. Abbott, “Improved Core Isolation and Access for Hierarchical Embedded Test,” IEEE Design & Test of Computers, pp. 18-25, Vol. 26, No. 1, 2009.
[53] L. -T. Wang, R. Apte, S. Wu, B. Sheu, K. -T. Lee, X. Wen, W. -B. Jone, J. Guo, W. -S. Wang, H.-J. Chao, J. Liu, Y. Niu, Y. -C. Sung, C.-C Wang, and F. Li, “Turbo 1500; Core-Based Design for Test and Diagnosis,” IEEE Design & Test of Computers, pp. 26-34, Vol. 26, No. 1, 2009.
[54] R. Kapur, P. Reuter, S. Bhatia, and B. Keller, “CTL and Its Usage in the EDA Industry,” IEEE Design & Test of Computers, pp. 36-42, Vol. 26, No. 1, 2009.
[55] T. McLaurin, S. Diamantidis, and I. Diamantidis, “The ARM Cortex-A8 Microprocessor IEEE Std 1500 Wrapper,” IEEE Design & Test of Computers, pp. 44-51, Vol. 26, No. 1, 2009.
[56] K. J. Balakrishnan, G. Giles, and J. Wingfield, “Test Access Mechanism in the Quad-Core AMD Opteron Microprocessor,” IEEE Design & Test of Computers, pp. 52-59, Vol. 26, No. 1, 2009.
[57] K. Chakravadhanula, and V. Chickermane, “Automating IEEE 1500 Core Test - An EDA Perspective,” IEEE Design & Test of Computers, pp. 6-15, Vol. 26, No. 3, 2009.
[58] A. Benso, A. Bosio, S.D. Carlo, and P. Prinetto, “Are IEEE-1500-Compliant Cores Really Compliant to the Standard,” IEEE Design & Test of Computers, pp.16-24, Vol. 26, No. 3, 2009.
[59] Q. Sinanoglu, E.J. Marinissen, A. Sehgal, J. fitzgerald, and J. Rearich, “Test data Volume Comparison: Monolithic vs. Modular SoC Testing,” IEEE Design & Test of Computers, pp. 25-37, Vol. 26, No. 3, 2009.
[60] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan, and J. Rajski, “Logic BIST for Large Industrial Designs: Real Issues and Case Studies”, Proc. Intl. Test Conf., pp. 358-367, 1999.
[61] B. Nadeau-Dostie, D. Burek, and A. Hassan, “ScanBist: A Multifrequency Scan-Based BIST Method,” IEEE Design & Test of Computers, Vol. 11, No. 1, pp. 7-17, 1994.
[62] Y.C. Huang and T.Y. Chang, “IEEE 1500-Based Delay Test Framework for At-Speed Testing of Multiple Clock Domains”, Master Thesis, National Tsing-Hua University, 2008.