簡易檢索 / 詳目顯示

研究生: 吳柏毅
Wu, Po-Yi
論文名稱: 以水熱和鍛燒合成六方型碳、氮摻雜硼酸鐵作為光芬頓催化劑
Synthesis of Hexagonal C, N -doped iron borate as Photo-Fenton Catalysts via Hydrothermal and Calcination Methods
指導教授: 龔佩雲
Keng, Pei-Yuin
口試委員: 洪崧富
Hung, Sung-Fu
葉哲寧
Yeh, Che-Ning
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 90
中文關鍵詞: 高級氧化處理程序光芬頓反應硼酸鐵雙氧水太陽光激發甲基藍水熱法
外文關鍵詞: Advanced oxidation process, C, N -doped FeBO3, methylene blue, solar irradiation activation
相關次數: 點閱:38下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,對工業廢水對水生態系統造成有害影響的認識不斷提高,對清潔水的需求促使人們加大對新型催化劑和廢水處理技術的研究。我們的研究小組成功地製備了單金屬硼酸鐵光Fenton催化劑,其催化活性比傳統的Fe3O4奈米顆粒增加了10倍,顯示出卓越的性能。
    本研究深入探討了C,N摻雜FeBO3的合成,使用不同的鐵前驅物來提高產量和光Fenton活性。在優化合成之過程中,水熱法在燒結前的應用對於提高合成產量的關鍵。特別是使用17 wt%的Fe2(SO4)3作為前驅物,使產品產量大幅增加,達到2克,而使用Fe3O4奈米顆粒作為鐵前驅物僅為80毫克。值得注意的是,使用Fe2(SO4)3¬作為鐵源合成的C,N摻雜FeBO3在光Fenton降解各種有機污染物的效率優於其他鐵源。
    總之,我們通過水熱和鍛燒方法合成了六邊型片狀之碳、氮摻雜硼酸鐵,最佳合成條件為使用17 wt%的硫酸鐵在800 °C下鍛燒。相較於Fe2O3和Fe3O4奈米粒子該催化劑表現出顯著增強的光芬頓活性。在太陽光模擬器下測試時,催化劑在25分鐘內有效降解10 ppm的亞甲基藍、四環黴素和4-硝基酚,其一級反應速率常數分別為1.069, 0.287 and 1.72 min-1。同時也透過捕捉活性氧化物種(ROS)證明OH自由基在降解過程中作為主導作用。也採用Langmuir-Hinshelwood 模型評估碳、氮摻雜硼酸鐵的表面反應機制。XRD分析表明,在經過五輪反應過後,催化劑仍保持穩定,進一步表示適使用於汙水處理。
    此外 本研究還探討了硼酸鐵合成中的固態反應機制。這一全面的探索揭示了形成碳、氮摻雜硼酸鐵之複雜過程。為其在各條件下有機汙染物光芬頓降解中之催化性能提供寶貴的見解。總之,這項研究開發了一種有前景之催化劑,旨在推進可持續解決之方案來處理廢水問題,解決全球都在關注之環境水汙染問題。


    In recent years, the escalating awareness of the deleterious impact of industrial wastewater on aquatic ecosystems and the accessibility of clean water has prompted intensified research into developing novel catalysts and technologies for wastewater treatment. Our research group has successfully developed a single-component metal borate photo-Fenton catalyst, demonstrating a remarkable 10-fold increase in catalytic activity compared to conventional Fe3O4 nanoparticles.
    This study delves into optimizing the synthesis of C, N-doped FeBO3, employing diverse iron precursors to enhance both yield and photo-Fenton activity. A hydrothermal process, introduced before calcination, proved instrumental in optimizing the synthesis. Particularly, the utilization of 17 wt% Fe2(SO4)3 as a precursor resulted in a substantial increase in product yield, yielding 2 g (20% yield) compared to the 80 mg (8% yield) obtained using Fe3O4 nanoparticles as the iron precursor. Notably, the C, N-doped FeBO3 synthesized with Fe2(SO4)3 demonstrated superior photo-Fenton degradation efficiency against various organic pollutants when compared to alternative iron sources.
    In summary, we synthesized hexagonal plate C, N-doped FeBO3 using hydrothermal and calcination methods from an optimal synthesis employing 17 wt% of iron sulfate at 800 °C. The catalyst exhibited significantly enhanced photo-Fenton activity over Fe2O3 and Fe3O4 nanoparticles. When tested under a solar simulator, the C, N-doped FeBO3 efficiently degraded 10 ppm methylene blue (MB), tetracycline (TC), and 4-nitrophenol (4-NP) within 25 minutes, with first-order kinetics of 1.069, 0.287 and 1.72 min-1, respectively. Trapping experiments suggest that •OH plays a dominant role as the reactive oxygen species (ROS) in the degradation process. The Langmuir-Hinshelwood model was employed to evaluate the surface reaction mechanism of the C, N-doped FeBO3. The catalyst remained stable, evidenced by XRD analysis, after five rounds of reactions, indicating suitability for use in wastewater treatment.
    Furthermore, this study investigated the solid-state reaction mechanism underlying the synthesis of iron borate. This comprehensive exploration sheds light on the intricate processes involved in forming C, N-doped FeBO3, providing valuable insights into its catalytic performance in the photo-Fenton degradation of organic pollutants under various conditions. In summary, this research develops a promising catalyst for the advancement of sustainable solutions for wastewater treatment, addressing the pressing global concerns surrounding water pollution.

    摘要 1 Abstract 3 Acknowledgment 5 Table of Content 6 Figures 7 Tables 9 Chapter 1 Introduction 10 Chapter 2 Literature Review 15 2.1 Advanced oxidation processes (AOPs) 15 2.1.1 Fenton reaction 16 2.1.2 Photo-Fenton 18 2.1.3 Electro-Fenton reaction 18 2.1.4 Ultrasound Fenton-like reaction 19 2.2 Iron-based heterogeneous photocatalyst applications 20 2.3 Development of metal borate 31 Chapter 3 Preparation and Design of Experiments 36 3.1 Chemicals 36 3.2 Synthesis of C, N-doped iron borate 36 3.2.1 Purification of C, N -doped iron borate 36 3.2.2 The synthesis of C, N -doped iron borate through calcination 37 3.2.3 The synthesis of C, N -doped iron borate through hydrothermal and calcination 38 3.3 Characterization 38 3.4 Degradation of methylene blue (MB) 39 3.5 Reactive oxidation species (ROS) analysis 40 Chapter 4 Results and Discussion 41 4.1 Synthesis of C, N -doped FeBO3 41 4.2 Morphology and structure of C, N-doped FeBO3 44 4.3 Surface characteristics 47 4.4 Thermal properties analysis 50 4.5 Bandgap measurement of C, N-doped FeBO3 52 4.6 The catalytic activity of C, N -doped FeBO3 in organic pollutants 53 4.7 Surface reaction mechanism of the C, N-doped FeBO3/H2O2/Solar simulator system 59 4.8 Analysis of reactive oxygen species 61 4.9 Stability and Reusability 63 Chapter 5 Conclusion 65 Chapter 6 Prospective 67

    [1] D. Dutta, S. Arya, S. Kumar, Industrial wastewater treatment: Current trends, bottlenecks, and best practices, Chemosphere 285 (2021) 131245. https://doi.org/10.1016/j.chemosphere.2021.131245.
    [2] P. Borah, M. Kumar, P. Devi, Chapter 2 - Types of inorganic pollutants: metals/metalloids, acids, and organic forms, in: P. Devi, P. Singh, S.K. Kansal (Eds.), Inorg. Pollut. Water, Elsevier, 2020: pp. 17–31. https://doi.org/10.1016/B978-0-12-818965-8.00002-0.
    [3] G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett. 17 (2019) 145–155. https://doi.org/10.1007/s10311-018-0785-9.
    [4] A.S. Stasinakis, N.S. Thomaidis, O.S. Arvaniti, A.G. Asimakopoulos, V.G. Samaras, A. Ajibola, D. Mamais, T.D. Lekkas, Contribution of primary and secondary treatment on the removal of benzothiazoles, benzotriazoles, endocrine disruptors, pharmaceuticals and perfluorinated compounds in a sewage treatment plant, Sci. Total Environ. 463–464 (2013) 1067–1075. https://doi.org/10.1016/j.scitotenv.2013.06.087.
    [5] M. Date, D. Jaspal, Pharmaceutical wastewater remediation: A review of treatment techniques, Ind. Eng. Chem. Res. 62 (2023) 20492–20505. https://doi.org/10.1021/acs.iecr.3c02451.
    [6] K.K. Ng, X. Shi, M.K.Y. Tang, H.Y. Ng, A novel application of anaerobic bio-entrapped membrane reactor for the treatment of chemical synthesis-based pharmaceutical wastewater, Sep. Purif. Technol. 132 (2014) 634–643. https://doi.org/10.1016/j.seppur.2014.06.021.
    [7] B. Tiwari, P. Drogui, R.D. Tyagi, Chapter 18 - Removal of emerging micro-pollutants from pharmaceutical industry wastewater, in: S. Varjani, A. Pandey, R.D. Tyagi, H.H. Ngo, C. Larroche (Eds.), Curr. Dev. Biotechnol. Bioeng., Elsevier, 2020: pp. 457–480. https://doi.org/10.1016/B978-0-12-819594-9.00018-8.
    [8] D. Ghernaout, Advanced oxidation phenomena in electrocoagulation process: a myth or a reality?, Desalination Water Treat. 51 (2013) 7536–7554. https://doi.org/10.1080/19443994.2013.792520.
    [9] Z. Li, Y. Sun, D. Liu, M. Yi, F. Chang, H. Li, Y. Du, A review of sulfate radical-based and singlet oxygen-based advanced oxidation technologies: Recent advances and prospects, Catalysts 12 (2022) 1092. https://doi.org/10.3390/catal12101092.
    [10] D. Ghernaout, N. Elboughdiri, S. Ghareba, Fenton technology for wastewater treatment: dares and trends, OALib 07 (2020) 1–26. https://doi.org/10.4236/oalib.1106045.
    [11] R. Dewil, D. Mantzavinos, I. Poulios, M.A. Rodrigo, New perspectives for advanced oxidation processes, J. Environ. Manage. 195 (2017) 93–99. https://doi.org/10.1016/j.jenvman.2017.04.010.
    [12] C. Hachem, F. Bocquillon, O. Zahraa, M. Bouchy, Decolourization of textile industry wastewater by the photocatalytic degradation process, Dyes Pigments 49 (2001) 117–125. https://doi.org/10.1016/S0143-7208(01)00014-6.
    [13] N. Thomas, D.D. Dionysiou, S.C. Pillai, Heterogeneous Fenton catalysts: A review of recent advances, J. Hazard. Mater. 404 (2021) 124082. https://doi.org/10.1016/j.jhazmat.2020.124082.
    [14] Y. Chen, N. Li, Y. Zhang, L. Zhang, Novel low-cost Fenton-like layered Fe-titanate catalyst: Preparation, characterization and application for degradation of organic colorants, J. Colloid Interface Sci. 422 (2014) 9–15. https://doi.org/10.1016/j.jcis.2014.01.013.
    [15] G. Pliego, J. Zazo, P. García-Muñoz, M. Munoz, J. Casas, J. Rodriguez, Trends in the intensification of the Fenton process for wastewater treatment: An overview, Crit. Rev. Environ. Sci. Technol. 45 (2015) 00–00. https://doi.org/10.1080/10643389.2015.1025646.
    [16] R. Cao, M. Fan, J. Hu, W. Ruan, K. Xiong, X. Wei, Optimizing low-concentration mercury removal from aqueous solutions by reduced graphene oxide-supported Fe3O4 composites with the aid of an artificial neural network and genetic algorithm, Materials 10 (2017) 1279. https://doi.org/10.3390/ma10111279.
    [17] Z. Liang, Q. Yan, H. Ou, D. Li, Y. Zhang, J. Zhang, L. Zeng, M. Xing, Effective green treatment of sewage sludge from Fenton reactions: Utilizing MoS2 for sustainable resource recovery, Proc. Natl. Acad. Sci. 121 (2024) e2317394121. https://doi.org/10.1073/pnas.2317394121.
    [18] M.D. Nguyen, H.-V. Tran, S. Xu, T.R. Lee, Fe3O4 nanoparticles: Structures, synthesis, magnetic properties, surface functionalization, and emerging applications, Appl. Sci. 11 (2021) 11301. https://doi.org/10.3390/app112311301.
    [19] M. Mishra, D.-M. Chun, α-Fe2O3 as a photocatalytic material: A review, Appl. Catal. Gen. 498 (2015) 126–141. https://doi.org/10.1016/j.apcata.2015.03.023.
    [20] W. Wang, W. Zhao, H. Zhang, X. Dou, H. Shi, 2D/2D step-scheme α-Fe2O3/Bi₂WO₆ photocatalyst with efficient charge transfer for enhanced photo-Fenton catalytic activity, Chin. J. Catal. 42 (2021) 97–106. https://doi.org/10.1016/S1872-2067(20)63602-6.
    [21] Y.-P. Sun, X. Li, J. Cao, W. Zhang, H.P. Wang, Characterization of zero-valent iron nanoparticles, Adv. Colloid Interface Sci. 120 (2006) 47–56. https://doi.org/10.1016/j.cis.2006.03.001.
    [22] S. Machado, J.G. Pacheco, H.P.A. Nouws, J.T. Albergaria, C. Delerue-Matos, Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts, Sci. Total Environ. 533 (2015) 76–81. https://doi.org/10.1016/j.scitotenv.2015.06.091.
    [23] F. Fu, D.D. Dionysiou, H. Liu, The use of zero-valent iron for groundwater remediation and wastewater treatment: A review, J. Hazard. Mater. 267 (2014) 194–205. https://doi.org/10.1016/j.jhazmat.2013.12.062.
    [24] X. Zhao, W. Liu, Z. Cai, B. Han, T. Qian, D. Zhao, An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation, Water Res. 100 (2016) 245–266. https://doi.org/10.1016/j.watres.2016.05.019.
    [25] C. Jiang, M. Hou, L. Yang, S. Guo, G. Yang, B. Xing, Y. Wang, D. Wang, X. Shi, High efficiency degradation organic pollutant using novel heme-derived Fe–N co-doped carbon catalyst activated PDS and H2O2, J. Phys. Chem. C 128 (2024) 4459–4469. https://doi.org/10.1021/acs.jpcc.3c07149.
    [26] C.-B. Wang, W. Zhang, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environ. Sci. Technol. 31 (1997) 2154–2156. https://doi.org/10.1021/es970039c.
    [27] W. Shi, D. Du, B. Shen, C. Cui, L. Lu, L. Wang, J. Zhang, Synthesis of yolk–shell structured Fe3O4@void@CdS nanoparticles: A general and effective structure design for photo-Fenton reaction, ACS Appl. Mater. Interfaces 8 (2016) 20831–20838. https://doi.org/10.1021/acsami.6b07644.
    [28] J. Hu, P. Zhang, W. An, L. Liu, Y. Liang, W. Cui, In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater, Appl. Catal. B Environ. 245 (2019) 130–142. https://doi.org/10.1016/j.apcatb.2018.12.029.
    [29] M. Kohantorabi, G. Moussavi, P. Oulego, S. Giannakis, Deriving an ɑ-Fe2O3/g-C3N4 nanocomposite from a naturally hematite-rich soil, for dual photocatalytic and photo-Fenton degradation of acetaminophen under visible light, Sep. Purif. Technol. 299 (2022) 121723. https://doi.org/10.1016/j.seppur.2022.121723.
    [30] D. Du, W. Shi, L. Wang, J. Zhang, Yolk-shell structured Fe3O4@void@TiO2 as a photo-Fenton-like catalyst for the extremely efficient elimination of tetracycline, Appl. Catal. B Environ. 200 (2017) 484–492. https://doi.org/10.1016/j.apcatb.2016.07.043.
    [31] D. Tian, H. Zhou, H. Zhang, P. Zhou, J. You, G. Yao, Z. Pan, Y. Liu, B. Lai, Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: From basic catalyst design principles to novel enhancement strategies, Chem. Eng. J. 428 (2022) 131166. https://doi.org/10.1016/j.cej.2021.131166.
    [32] X. Huang, N. Zhu, F. Mao, Y. Ding, S. Zhang, H. Liu, F. Li, P. Wu, Z. Dang, Y. Ke, Enhanced heterogeneous photo-Fenton catalytic degradation of tetracycline over yCeO2/Fh composites: Performance, degradation pathways, Fe²⁺ regeneration and mechanism, Chem. Eng. J. 392 (2020) 123636. https://doi.org/10.1016/j.cej.2019.123636.
    [33] M. Vinothkannan, C. Karthikeyan, G. Gnana kumar, A.R. Kim, D.J. Yoo, One-pot green synthesis of reduced graphene oxide (RGO)/Fe₃O₄ nanocomposites and its catalytic activity toward methylene blue dye degradation, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 136 (2015) 256–264. https://doi.org/10.1016/j.saa.2014.09.031.
    [34] X. Liu, S. Gu, Y. Zhao, G. Zhou, W. Li, BiVO₄, Bi₂WO₆ and Bi₂MoO₆ photocatalysis: A brief review, J. Mater. Sci. Technol. 56 (2020) 45–68. https://doi.org/10.1016/j.jmst.2020.04.023.
    [35] D. Zhu, Q. Zhou, Nitrogen doped g-C₃N₄ with the extremely narrow band gap for excellent photocatalytic activities under visible light, Appl. Catal. B Environ. 281 (2021) 119474. https://doi.org/10.1016/j.apcatb.2020.119474.
    [36] L.H.M. de Groot, A. Ilic, J. Schwarz, K. Wärnmark, Iron photoredox catalysis–past, present, and future, J. Am. Chem. Soc. 145 (2023) 9369–9388. https://doi.org/10.1021/jacs.3c01000.
    [37] C. Zhang, X. Wang, J. Du, Z. Gu, Y. Zhao, Reactive oxygen species-regulating strategies based on nanomaterials for disease treatment, Adv. Sci. 8 (2021) 2002797. https://doi.org/10.1002/advs.202002797.
    [38] Y.-H. Chiu, T.-F.M. Chang, C.-Y. Chen, M. Sone, Y.-J. Hsu, Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts, Catalysts 9 (2019) 430. https://doi.org/10.3390/catal9050430.
    [39] S.-Y. Hsiao, E.-X. Lin, P.-Y. Keng, Facile Synthesis of carbon- and nitrogen-doped iron borate as a highly efficient single-component heterogeneous photo-Fenton catalyst under simulated solar irradiation, Nanomaterials 11 (2021) 2853. https://doi.org/10.3390/nano11112853.
    [40] B. Li, H.-Y. Xu, Y.-L. Liu, L.-M. Dong, S. Komarneni, Fabricating an oxygen-vacancy-rich urchin-like Co3O4 nanocatalyst to boost peroxymonosulfate activation to degrade high-concentration crystal violet, Ceram. Int. 48 (2022) 26553–26564. https://doi.org/10.1016/j.ceramint.2022.05.351.
    [41] Y. Zhao, F. Ma, Z. Wang, P. Wang, Y. Liu, H. Cheng, Y. Dai, Z. Zheng, B. Huang, Borate-modulated amorphous NiFeB nanocatalysts as highly active and stable electrocatalysts for oxygen evolution reaction, J. Alloys Compd. 903 (2022) 163741. https://doi.org/10.1016/j.jallcom.2022.163741.
    [42] S. Gupta, M.K. Patel, A. Miotello, N. Patel, Metal boride-based catalysts for electrochemical water-splitting: A review, Adv. Funct. Mater. 30 (2020) 1906481. https://doi.org/10.1002/adfm.201906481.
    [43] J. Wang, T. Xie, X. Liu, D. Wu, Y. Li, Z. Wang, X. Fan, F. Zhang, W. Peng, Enhanced redox cycle of Fe³⁺/Fe²⁺ on Fe@NC by boron: Fast electron transfer and long-term stability for Fenton-like reaction, J. Hazard. Mater. 445 (2023) 130605. https://doi.org/10.1016/j.jhazmat.2022.130605.
    [44] K. Abuhasel, M. Kchaou, M. Alquraish, Y. Munusamy, Y.T. Jeng, Oily wastewater treatment: overview of conventional and modern methods, challenges, and future opportunities, Water 13 (2021) 980. https://doi.org/10.3390/w13070980.
    [45] T. Shindhal, P. Rakholiya, S. Varjani, A. Pandey, H.H. Ngo, W. Guo, H.Y. Ng, M.J. Taherzadeh, A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater, Bioengineered 12 (2021) 70–87. https://doi.org/10.1080/21655979.2020.1863034.
    [46] A. Ghaly, R. Ananthashankar, M. Alhattab, V. vasudevan ramakrishnan, Production, characterization and treatment of textile effluents: A critical review, J Chem Eng Process Technol 5 (2014).
    [47] M. Samer, Biological and chemical wastewater treatment processes, in: IntechOpen, 2015. https://doi.org/10.5772/61250.
    [48] D.P. Zagklis, G. Bampos, Tertiary wastewater treatment technologies: A review of technical, economic, and life cycle aspects, Processes 10 (2022) 2304. https://doi.org/10.3390/pr10112304.
    [49] O. Garcia-Rodriguez, E. Mousset, H. Olvera-Vargas, O. Lefebvre, Electrochemical treatment of highly concentrated wastewater: A review of experimental and modeling approaches from lab- to full-scale, Crit. Rev. Environ. Sci. Technol. (2020) 1–70. https://doi.org/10.1080/10643389.2020.1820428.
    [50] B.-T. Zhang, Y. Zhang, Y. Teng, M. Fan, Sulfate radical and its application in decontamination technologies, Crit. Rev. Environ. Sci. Technol. 45 (2015) 1756–1800. https://doi.org/10.1080/10643389.2014.970681.
    [51] H.-Y. Gao, C.-H. Huang, L. Mao, B. Shao, J. Shao, Z.-Y. Yan, M. Tang, B.-Z. Zhu, First direct and unequivocal electron spin resonance spin-trapping evidence for pH-dependent production of hydroxyl radicals from sulfate radicals, Environ. Sci. Technol. 54 (2020) 14046–14056. https://doi.org/10.1021/acs.est.0c04410.
    [52] J. Wang, S. Wang, Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism, Chem. Eng. J. 401 (2020) 126158. https://doi.org/10.1016/j.cej.2020.126158.
    [53] L. Saya, V. Malik, D. Gautam, G. Gambhir, Balendra, W.R. Singh, S. Hooda, A comprehensive review on recent advances toward sequestration of levofloxacin antibiotic from wastewater, Sci. Total Environ. 813 (2022) 152529. https://doi.org/10.1016/j.scitotenv.2021.152529.
    [54] M.M. Bello, A.A. Abdul Raman, A. Asghar, A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment, Process Saf. Environ. Prot. 126 (2019) 119–140. https://doi.org/10.1016/j.psep.2019.03.028.
    [55] H. Zhou, J. Peng, X. Duan, H. Yin, B. Huang, C. Zhou, S. Zhong, H. Zhang, P. Zhou, Z. Xiong, Z. Ao, S. Wang, G. Yao, B. Lai, Redox-active polymers as robust electron-shuttle co-catalysts for fast Fe3+ /Fe2+ Circulation and Green Fenton Oxidation, Environ. Sci. Technol. 57 (2023) 3334–3344. https://doi.org/10.1021/acs.est.2c07447.
    [56] N. Wang, T. Zheng, G. Zhang, P. Wang, A review on Fenton-like processes for organic wastewater treatment, J. Environ. Chem. Eng. 4 (2016) 762–787. https://doi.org/10.1016/j.jece.2015.12.016.
    [57] E. Brillas, S. Garcia-Segura, Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: A review on the relevance of phenol as model molecule, Sep. Purif. Technol. 237 (2020) 116337. https://doi.org/10.1016/j.seppur.2019.116337.
    [58] C. Du, Y. Zhang, Z. Zhang, L. Zhou, G. Yu, X. Wen, T. Chi, G. Wang, Y. Su, F. Deng, Y. Lv, H. Zhu, Fe-based metal organic frameworks (Fe-MOFs) for organic pollutants removal via photo-Fenton: A review, Chem. Eng. J. 431 (2022) 133932. https://doi.org/10.1016/j.cej.2021.133932.
    [59] Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollut. Rep. 1 (2015) 167–176. https://doi.org/10.1007/s40726-015-0015-z.
    [60] M. Sahoo, Degradation and mineralization of organic contaminants by Fenton and photo-Fenton processes: Review of mechanisms and effects of organic and inorganic additives, Res. J. Chem. Environ. 15 (2011) 96–112.
    [61] K. Anzai, T. Aikawa, Y. Furukawa, Y. Matsushima, S. Urano, T. Ozawa, ESR measurement of rapid penetration of DMPO and DEPMPO spin traps through lipid bilayer membranes, Arch. Biochem. Biophys. 415 (2003) 251–256. https://doi.org/10.1016/S0003-9861(03)00260-1.
    [62] Z. Rao, Y.-G. Fang, Y. Pan, W. Yu, B. Chen, J.S. Francisco, C. Zhu, C. Chu, Accelerated photolysis of H2O2 at the air–water interface of a microdroplet, J. Am. Chem. Soc. 145 (2023) 24717–24723. https://doi.org/10.1021/jacs.3c08101.
    [63] B.C. Faust, J. Hoigné, Photolysis of Fe (III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain, Atmospheric Environ. Part Gen. Top. 24 (1990) 79–89. https://doi.org/10.1016/0960-1686(90)90443-Q.
    [64] J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidationprocesses for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Technol. 36 (2006) 1–84.
    [65] Z. Wang, J. Liu, New insight into photochemical oxidation of Fe(II): The roles of Fe(III) and reactive oxygen species, Catal. Today 224 (2014) 244–250. https://doi.org/10.1016/j.cattod.2013.09.063.
    [66] P.-A. Michaud, M. Panizza, L. Ouattara, T. Diaco, G. Foti, Ch. Comninellis, Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes, J. Appl. Electrochem. 33 (2003) 151–154. https://doi.org/10.1023/A:1024084924058.
    [67] E. Guivarch, T. Stephane, C. Lahitte, M. Oturan, Degradation of azo dyes in water by Electro-Fenton process, Environ. Chem. Lett. 1 (2003) 38–44. https://doi.org/10.1007/s10311-002-0017-0.
    [68] C.S. Puttasrinivasa, R.M. Yogarajachari, L.H. Gurusiddappa, C.K. Kachintaya, S. Kalikeri, Chapter 8 - Advance oxidation processes for wastewater treatment: A crucial tool for sustainability, in: C.M. Hussain, V.S. Kodialbail (Eds.), Concept Zero Liq. Disch., Elsevier, 2023: pp. 163–185. https://doi.org/10.1016/B978-0-323-91745-2.00010-3.
    [69] V.S. Moholkar, Mechanistic optimization of a dual frequency sonochemical reactor, Chem. Eng. Sci. 64 (2009) 5255–5267. https://doi.org/10.1016/j.ces.2009.08.037.
    [70] Y. Segura, F. Martínez, J.A. Melero, R. Molina, R. Chand, D.H. Bremner, Enhancement of the advanced Fenton process (Fe0/H2O2) by ultrasound for the mineralization of phenol, Appl. Catal. B Environ. 113–114 (2012) 100–106. https://doi.org/10.1016/j.apcatb.2011.11.024.
    [71] J.C.D. Freitas, R.M. Branco, I.G.O. Lisboa, T.P.D. Costa, M.G.N. Campos, M. Jafelicci Júnior, R.F.C. Marques, Magnetic Nanoparticles Obtained by Homogeneous Coprecipitation Sonochemically Assisted, Mater. Res. 18 (2015) 220–224. https://doi.org/10.1590/1516-1439.366114.
    [72] S. Fang, L. Xu, H. Wu, Y. Xu, Z. Wang, K. Shu, Y. Hu, Influence of surface dissolution on sodium oleate adsorption on ilmenite and its gangue minerals by ultrasonic treatment, Appl. Surf. Sci. 500 (2019) 144038. https://doi.org/10.1016/j.apsusc.2019.144038.
    [73] S. Liu, Z. Long, H. Liu, Y. Wang, J. Zhang, G. Zhang, J. Liang, Recent advances in ultrasound-Fenton/Fenton-like technology for degradation of aqueous organic pollutants, Chemosphere 352 (2024) 141286. https://doi.org/10.1016/j.chemosphere.2024.141286.
    [74] A. Babuponnusami, K. Muthukumar, Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes, Chem. Eng. J. 183 (2012) 1–9. https://doi.org/10.1016/j.cej.2011.12.010.
    [75] A.A. Pradhan, P.R. Gogate, Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry, J. Hazard. Mater. 173 (2010) 517–522. https://doi.org/10.1016/j.jhazmat.2009.08.115.
    [76] M.A. Oturan, J.-J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications. A review, Crit. Rev. Environ. Sci. Technol. 44 (2014) 2577–2641. https://doi.org/10.1080/10643389.2013.829765.
    [77] E. Cuervo Lumbaque, D. Salmoria Araújo, T. Moreira Klein, E.R. Lopes Tiburtius, J. Argüello, C. Sirtori, Solar photo-Fenton-like process at neutral pH: Fe(III)-EDDS complex formation and optimization of experimental conditions for degradation of pharmaceuticals, Catal. Today 328 (2019) 259–266. https://doi.org/10.1016/j.cattod.2019.01.006.
    [78] J. Adusei-Gyamfi, B. Ouddane, L. Rietveld, J.-P. Cornard, J. Criquet, Natural organic matter-cations complexation and its impact on water treatment: A critical review, Water Res. 160 (2019) 130–147. https://doi.org/10.1016/j.watres.2019.05.064.
    [79] W. Huang, M. Brigante, F. Wu, C. Mousty, K. Hanna, G. Mailhot, Assessment of the Fe(III)–EDDS Complex in Fenton-Like Processes: From the Radical Formation to the Degradation of Bisphenol A, Environ. Sci. Technol. 47 (2013) 1952–1959. https://doi.org/10.1021/es304502y.
    [80] C.A. Murray, S.A. Parsons, Removal of NOM from drinking water: Fenton’s and photo-Fenton’s processes, Chemosphere 54 (2004) 1017–1023. https://doi.org/10.1016/j.chemosphere.2003.08.040.
    [79] L. Dąbrowska, Trihalomethane formation potential in the water treated by coagulation, J. Ecol. Eng. 20 (2019) 237–244. https://doi.org/10.12911/22998993/112484.
    [82] S.M. Ekström, O. Regnell, H.E. Reader, P.A. Nilsson, S. Löfgren, E.S. Kritzberg, Increasing concentrations of iron in surface waters as a consequence of reducing conditions in the catchment area, J. Geophys. Res. Biogeosciences 121 (2016) 479–493. https://doi.org/10.1002/2015JG003141.
    [83] F. Sun, H. Liu, H. Wang, D. Shu, T. Chen, X. Zou, F. Huang, D. Chen, A novel discovery of a heterogeneous Fenton-like system based on natural siderite: A wide range of pH values from 3 to 9, Sci. Total Environ. 698 (2020) 134293. https://doi.org/10.1016/j.scitotenv.2019.134293.
    [84] A. Hassani, M. Karaca, S. Karaca, A. Khataee, Ö. Açışlı, B. Yılmaz, Preparation of magnetite nanoparticles by high-energy planetary ball mill and its application for ciprofloxacin degradation through heterogeneous Fenton process, J. Environ. Manage. 211 (2018) 53–62. https://doi.org/10.1016/j.jenvman.2018.01.014.
    [85] A. Shokri, M.S. Fard, A critical review in Fenton-like approach for the removal of pollutants in the aqueous environment, Environ. Chall. 7 (2022) 100534. https://doi.org/10.1016/j.envc.2022.100534.
    [86] B. Jain, A.K. Singh, H. Kim, E. Lichtfouse, V.K. Sharma, Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes, Environ. Chem. Lett. 16 (2018) 947–967. https://doi.org/10.1007/s10311-018-0738-3.
    [84] E. Farnetti, R. Monte, J. Kašpar, Encyclopedia of Life Support Systems ( EOLSS ) Homogeneous and heterogeneous catalysis, in: n.d. https://www.semanticscholar.org/paper/Encyclopedia-of-Life-Support-Systems-(-EOLSS-)-AND-Farnetti-Monte/e725830b9959d003011a3f7a8a809c53226e0fae.
    [85] E.D.N. Silva, I.L.O. Brasileiro, V.S. Madeira, B.A. De Farias, M.L.A. Ramalho, E. Rodríguez-Aguado, E. Rodríguez-Castellón, Reusable CuFe2O4–Fe2O3 catalyst synthesis and application for the heterogeneous photo-Fenton degradation of methylene blue in visible light, J. Environ. Chem. Eng. 8 (2020) 104132. https://doi.org/10.1016/j.jece.2020.104132.
    [89] S. Rahim Pouran, A.A. Abdul Raman, W.M.A. Wan Daud, Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions, J. Clean. Prod. 64 (2014) 24–35. https://doi.org/10.1016/j.jclepro.2013.09.013.
    [87] A. Fürstner, Iron Catalysis in Organic Synthesis: A critical assessment of what it takes to make this base metal a multitasking champion, ACS Cent. Sci. 2 (2016) 778–789. https://doi.org/10.1021/acscentsci.6b00272.
    [88] R.C.C. Costa, F.C.C. Moura, J.D. Ardisson, J.D. Fabris, R.M. Lago, Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides, Appl. Catal. B Environ. 83 (2008) 131–139. https://doi.org/10.1016/j.apcatb.2008.01.039.
    [92] M.I.A. Abdel Maksoud, A.M. Elgarahy, C. Farrell, A.H. Al-Muhtaseb, D.W. Rooney, A.I. Osman, Insight on water remediation application using magnetic nanomaterials and biosorbents, Coord. Chem. Rev. 403 (2020) 213096. https://doi.org/10.1016/j.ccr.2019.213096.
    [93] K.F. Ngulube, A. Abdelhaleem, A.I. Osman, L. Peng, M. Nasr, Advancing sustainable water treatment strategies: harnessing magnetite-based photocatalysts and techno-economic analysis for enhanced wastewater management in the context of SDGs, Environ. Sci. Pollut. Res. (2024). https://doi.org/10.1007/s11356-024-32680-9.
    [94] F. Farahbakhsh, M. Ahmadi, S.H. Hekmatara, M. Sabet, E. Heydari-Bafrooei, Improvement of photocatalyst properties of magnetic NPs by new anionic surfactant, Mater. Chem. Phys. 224 (2019) 279–285. https://doi.org/10.1016/j.matchemphys.2018.11.074.
    [92] D. Wu, Y. Chen, Y. Zhang, Y. Feng, K. Shih, Ferric iron enhanced chloramphenicol oxidation in pyrite (FeS2) induced Fenton-like reactions, Sep. Purif. Technol. 154 (2015) 60–67. https://doi.org/10.1016/j.seppur.2015.09.016.
    [96] X. Nie, G. Li, S. Li, Y. Luo, W. Luo, Q. Wan, T. An, Highly efficient adsorption and catalytic degradation of ciprofloxacin by a novel heterogeneous Fenton catalyst of hexapod-like pyrite nanosheets mineral clusters, Appl. Catal. B Environ. 300 (2022) 120734. https://doi.org/10.1016/j.apcatb.2021.120734.
    [94] F. Rezaei, D. Vione, Effect of pH on zero valent iron performance in heterogeneous Fenton and Fenton-like processes: A review, Molecules 23 (2018) 3127. https://doi.org/10.3390/molecules23123127.
    [98] R. Mukherjee, R. Kumar, A. Sinha, Y. Lama, A.K. Saha, A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation, Crit. Rev. Environ. Sci. Technol. 46 (2016) 443–466. https://doi.org/10.1080/10643389.2015.1103832.
    [99] R. Yamaguchi, S. Kurosu, M. Suzuki, Y. Kawase, Hydroxyl radical generation by zero-valent iron/Cu (ZVI/Cu) bimetallic catalyst in wastewater treatment: Heterogeneous Fenton/Fenton-like reactions by Fenton reagents formed in-situ under oxic conditions, Chem. Eng. J. 334 (2018) 1537–1549. https://doi.org/10.1016/j.cej.2017.10.154.
    [100] L. Xu, J. Wang, A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol, J. Hazard. Mater. 186 (2011) 256–264. https://doi.org/10.1016/j.jhazmat.2010.10.116.
    [98] J. Shi, Z. Ai, L. Zhang, Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles, Water Res. 59 (2014) 145–153. https://doi.org/10.1016/j.watres.2014.04.015.
    [102] S. Su, C. Cao, Y. Zhao, D.D. Dionysiou, Efficient transformation and elimination of roxarsone and its metabolites by a new α-FeOOH@GCA activating persulfate system under UV irradiation with subsequent As(V) recovery, Appl. Catal. B Environ. 245 (2019) 207–219. https://doi.org/10.1016/j.apcatb.2018.12.050.
    [103] A. Balapure, J.R. Dutta, R. Ganesan, Recent advances in semiconductor heterojunctions: a detailed review of the fundamentals of photocatalysis, charge transfer mechanism and materials, RSC Appl. Interfaces 1 (2024) 43–69. https://doi.org/10.1039/D3LF00126A.
    [104] J. Xu, J. Shen, H. Jiang, X. Yu, W. Ahmad Qureshi, C. Maouche, J. Gao, J. Yang, Q. Liu, Progress and challenges in full spectrum photocatalysts: Mechanism and photocatalytic applications, J. Ind. Eng. Chem. 119 (2023) 112–129. https://doi.org/10.1016/j.jiec.2022.11.057.
    [102] M.A. Hassaan, M.A. El-Nemr, M.R. Elkatory, S. Ragab, V.-C. Niculescu, A. El Nemr, Principles of photocatalysts and their different applications: A review, Top. Curr. Chem. 381 (2023) 31. https://doi.org/10.1007/s41061-023-00444-7.
    [103] P. Calza, M. Minella, L. Demarchis, F. Sordello, C. Minero, Photocatalytic rate dependence on light absorption properties of different TiO2 specimens, Catal. Today 340 (2020) 12–18. https://doi.org/10.1016/j.cattod.2018.10.013.
    [104] H. Yu, J. Huang, M. Zhao, J. Xu, M. Li, L. Kong, Magnetic field-assisted enhancement of photocatalytic activity: Modified Co-POMs direct Z-scheme heterojunction Co4PW9CeO2 for efficient carrier separation and transport, J. Mol. Struct. 1316 (2024) 139015. https://doi.org/10.1016/j.molstruc.2024.139015.
    [105] Y. Kumar, R. Kumar, P. Raizada, A.A.P. Khan, A. Singh, Q.V. Le, V.-H. Nguyen, R. Selvasembian, S. Thakur, P. Singh, Current status of hematite (α-Fe2O3) based Z-scheme photocatalytic systems for environmental and energy applications, J. Environ. Chem. Eng. 10 (2022) 107427. https://doi.org/10.1016/j.jece.2022.107427.
    [106] S. Sun, H. Li, Z.J. Xu, Impact of surface area in evaluation of catalyst activity, Joule 2 (2018) 1024–1027. https://doi.org/10.1016/j.joule.2018.05.003.
    [107] S.N. Dang, S.X. Lu, W.G. Xu, J. Sa, Dark-degradation of reactive brilliant blue X-BR in aqueous solution using α-Fe2O3, J. Non-Cryst. Solids 354 (2008) 5018–5021. https://doi.org/10.1016/j.jnoncrysol.2008.07.027.
    [111] M. Minella, G. Marchetti, E. De Laurentiis, M. Malandrino, V. Maurino, C. Minero, D. Vione, K. Hanna, Photo-Fenton oxidation of phenol with magnetite as iron source, Appl. Catal. B Environ. 154–155 (2014) 102–109. https://doi.org/10.1016/j.apcatb.2014.02.006.
    [109] X. Zhou, H. Yang, C. Wang, X. Mao, Y. Wang, Y. Yang, G. Liu, Visible light induced photocatalytic degradation of rhodamine B on one-dimensional iron oxide particles, J. Phys. Chem. C 114 (2010) 17051–17061. https://doi.org/10.1021/jp103816e.
    [110] S. Zeng, K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang, Y. Qi, W. Zhou, Facile route for the fabrication of porous hematite nanoflowers:  Its synthesis, growth mechanism, application in the lithium ion battery, and magnetic and photocatalytic properties, J. Phys. Chem. C 112 (2008) 4836–4843. https://doi.org/10.1021/jp0768773.
    [111] X. Liu, J. Liu, Z. Chang, X. Sun, Y. Li, Crystal plane effect of Fe2O3 with various morphologies on CO catalytic oxidation, Catal. Commun. 12 (2011) 530–534. https://doi.org/10.1016/j.catcom.2010.11.016.
    [112] Y. Zheng, Y. Cheng, Y. Wang, F. Bao, L. Zhou, X. Wei, Y. Zhang, Q. Zheng, Quasicubic α-Fe2O3 nanoparticles with excellent catalytic performance, J. Phys. Chem. B 110 (2006) 3093–3097. https://doi.org/10.1021/jp056617q.
    [116] Q. Ji, J. Li, Z. Xiong, B. Lai, Enhanced reactivity of microscale Fe/Cu bimetallic particles (mFe/Cu) with persulfate (PS) for p-nitrophenol (PNP) removal in aqueous solution, Chemosphere 172 (2017) 10–20. https://doi.org/10.1016/j.chemosphere.2016.12.128.
    [117] Y. Xu, G. Zhang, G. Du, Y. Sun, D. Gao, α-Fe2O3 nanostructures with different morphologies: Additive-free synthesis, magnetic properties, and visible light photocatalytic properties, Mater. Lett. 92 (2013) 321–324. https://doi.org/10.1016/j.matlet.2012.10.101.
    [118] K. Gandha, J. Mohapatra, M.K. Hossain, K. Elkins, N. Poudyal, K. Rajeshwar, J.P. Liu, Mesoporous iron oxide nanowires: synthesis, magnetic and photocatalytic properties, RSC Adv. 6 (2016) 90537–90546. https://doi.org/10.1039/C6RA18530D.
    [115] H. Liu, K. Tian, J. Ning, Y. Zhong, Z. Zhang, Y. Hu, One-step solvothermal formation of Pt nanoparticles decorated Pt2+-doped α-Fe2O3 nanoplates with enhanced photocatalytic O2 evolution, ACS Catal. 9 (2019) 1211–1219. https://doi.org/10.1021/acscatal.8b03819.
    [116] Q. Jiang, R. Zhu, Y. Zhu, Q. Chen, Efficient degradation of cefotaxime by a UV+ferrihydrite/TiO2+H2O2 process: the important role of ferrihydrite in transferring photo-generated electrons from TiO2 to H2O2, J. Chem. Technol. Biotechnol. 94 (2019) 2512–2521. https://doi.org/10.1002/jctb.6041.
    [117] S. Singla, S. Sharma, S. Basu, MoS2/WO3 heterojunction with the intensified photocatalytic performance for decomposition of organic pollutants under the broad array of solar light, J. Clean. Prod. 324 (2021) 129290. https://doi.org/10.1016/j.jclepro.2021.129290.
    [118] S. Mustapha, M.M. Ndamitso, A.S. Abdulkareem, J.O. Tijani, D.T. Shuaib, A.O. Ajala, A.K. Mohammed, Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review, Appl. Water Sci. 10 (2020) 49. https://doi.org/10.1007/s13201-019-1138-y.
    [119] N. Thomas, S. Mathew, K.M. Nair, K. O’Dowd, P. Forouzandeh, A. Goswami, G. McGranaghan, S.C. Pillai, 2D MoS2: structure, mechanisms, and photocatalytic applications, Mater. Today Sustain. 13 (2021) 100073. https://doi.org/10.1016/j.mtsust.2021.100073.
    [120] M.I. Din, R. Khalid, Z. Hussain, Recent research on development and modification of nontoxic semiconductor for environmental application, Sep. Purif. Rev. 50 (2021) 244–261. https://doi.org/10.1080/15422119.2020.1714658.
    [125] R. Ji, J. Chen, T. Liu, X. Zhou, Y. Zhang, Critical review of perovskites-based advanced oxidation processes for wastewater treatment: Operational parameters, reaction mechanisms, and prospects, Chin. Chem. Lett. 33 (2022) 643–652. https://doi.org/10.1016/j.cclet.2021.07.043.
    [122] M. A., M. J., M. Ashokkumar, P. Arunachalam, A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications, Appl. Catal. Gen. 555 (2018) 47–74. https://doi.org/10.1016/j.apcata.2018.02.010.
    [127] S. Chala, K. Wetchakun, S. Phanichphant, B. Inceesungvorn, N. Wetchakun, Enhanced visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO4 photocatalyst, J. Alloys Compd. 597 (2014) 129–135. https://doi.org/10.1016/j.jallcom.2014.01.130.
    [124] Y. Huo, Y. Jin, Y. Zhang, Citric acid assisted solvothermal synthesis of BiFeO3 microspheres with high visible-light photocatalytic activity, J. Mol. Catal. Chem. 331 (2010) 15–20. https://doi.org/10.1016/j.molcata.2010.08.009.
    [125] J. Li, J. You, Z. Wang, Y. Zhao, J. Xu, M. Duan, H. Zhang, Fe2O3/BiVO4 heterogeneous photo-Fenton catalyst with excellent dye degradation performance prepared by ultrasonic-assisted calcination, J. Mater. Sci. 58 (2023) 10274–10287. https://doi.org/10.1007/s10853-023-08683-1.
    [126] N.D. Kolhe, L.S. Walekar, A.N. Kadam, A.S. Chopade, S.-W. Lee, D.S. Mhamane, S.N. Shringare, A.S. Lawand, G.S. Gokavi, M. Misra, M.G. Mali, MOF derived in-situ construction of core-shell Z-scheme BiVO4@α-Fe2O3-CF nanocomposites for efficient photocatalytic treatment of organic pollutants under visible light, J. Clean. Prod. 420 (2023) 138179. https://doi.org/10.1016/j.jclepro.2023.138179.
    [127] J. Gao, Y. Wang, S. Zhou, W. Lin, Y. Kong, A facile one‐step synthesis of Fe‐doped g‐C3N4 nanosheets and their improved visible‐light photocatalytic performance, ChemCatChem 9 (2017) 1708–1715. https://doi.org/10.1002/cctc.201700492.
    [128] B. Zhu, P. Xia, Y. Li, W. Ho, J. Yu, Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst, Appl. Surf. Sci. 391 (2017) 175–183. https://doi.org/10.1016/j.apsusc.2016.07.104.
    [129] C. Li, S. Yu, H. Che, X. Zhang, J. Han, Y. Mao, Y. Wang, C. Liu, H. Dong, Fabrication of Z-scheme heterojunction by anchoring mesoporous γ-Fe2O3 nanospheres on g-C3N4 for degrading tetracycline hydrochloride in water, ACS Sustain. Chem. Eng. 6 (2018) 16437–16447. https://doi.org/10.1021/acssuschemeng.8b03500.
    [134] Y. Wang, Y. Gao, L. Chen, H. Zhang, Goethite as an efficient heterogeneous Fenton catalyst for the degradation of methyl orange, Catal. Today 252 (2015) 107–112. https://doi.org/10.1016/j.cattod.2015.01.012.
    [135] T. Liu, N. Chen, Y. Deng, F. Chen, C. Feng, Degradation of p-nitrophenol by nano-pyrite catalyzed Fenton reaction with enhanced peroxide utilization, RSC Adv. 10 (2020) 15901–15912. https://doi.org/10.1039/D0RA01177K.
    [132] S. Shekar G. C., K. Alkanad, A. Hezam, A. Alsalme, N. Al-Zaqri, L. N. k., Enhanced photo-Fenton activity over a sunlight-driven ignition synthesized α-Fe2O3-Fe3O4/CeO2 heterojunction catalyst enriched with oxygen vacancies, J. Mol. Liq. 335 (2021) 116186. https://doi.org/10.1016/j.molliq.2021.116186.
    [133] H. Xie, F. Wang, B. Liao, X. Liao, J. Chen, Y. Yu, S. Hou, X. Fan, A novel double anion layered photocatalyst Pb4(BO3)2SO4 with enhanced photocatalytic performance for antibiotic degradation, Chem. Eng. J. 429 (2022) 132344. https://doi.org/10.1016/j.cej.2021.132344.
    [134] D.K. Bediako, Y. Surendranath, D.G. Nocera, Mechanistic studies of the oxygen evolution reaction mediated by a nickel–borate thin film electrocatalyst, J. Am. Chem. Soc. 135 (2013) 3662–3674. https://doi.org/10.1021/ja3126432.
    [139] N. Wang, A. Xu, P. Ou, S.-F. Hung, A. Ozden, Y.-R. Lu, J. Abed, Z. Wang, Y. Yan, M.-J. Sun, Y. Xia, M. Han, J. Han, K. Yao, F.-Y. Wu, P.-H. Chen, A. Vomiero, A. Seifitokaldani, X. Sun, D. Sinton, Y. Liu, E.H. Sargent, H. Liang, Boride-derived oxygen-evolution catalysts, Nat. Commun. 12 (2021) 6089. https://doi.org/10.1038/s41467-021-26307-7.
    [136] J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Sun, C. Somsen, M. Muhler, W. Schuhmann, Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution, Adv. Energy Mater. 6 (2016) 1502313. https://doi.org/10.1002/aenm.201502313.
    [137] L. Cui, W. Zhang, R. Zheng, J. Liu, Electrocatalysts based on transition metal borides and borates for the oxygen evolution reaction, Chem. – Eur. J. 26 (2020) 11661–11672. https://doi.org/10.1002/chem.202000880.
    [142] B. Huang, Z. Xiong, P. Zhou, H. Zhang, Z. Pan, G. Yao, B. Lai, Ultrafast degradation of contaminants in a trace cobalt(II) activated peroxymonosulfate process triggered through borate: Indispensable role of intermediate complex, J. Hazard. Mater. 424 (2022) 127641. https://doi.org/10.1016/j.jhazmat.2021.127641.
    [143] J. Li, H. Chen, Y. Liu, R. Gao, X. Zou, In situ structural evolution of a nickel boride catalyst: synergistic geometric and electronic optimization for the oxygen evolution reaction, J. Mater. Chem. A 7 (2019) 5288–5294. https://doi.org/10.1039/C9TA00489K.
    [144] Q. Liu, H. Zhao, M. Jiang, Q. Kang, W. Zhou, P. Wang, F. Zhou, Boron enhances oxygen evolution reaction activity over Ni foam-supported iron boride nanowires, J. Mater. Chem. A 8 (2020) 13638–13645. https://doi.org/10.1039/C9TA14256H.
    [145] P. Zhou, W. Ren, G. Nie, X. Li, X. Duan, Y. Zhang, S. Wang, Fast and long-lasting iron(III) reduction by boron toward green and accelerated Fenton chemistry, Angew. Chem. Int. Ed. 59 (2020) 16517–16526. https://doi.org/10.1002/anie.202007046.
    [146] P. Qiu, J. Zhu, S. Gao, S. Zhang, J. Gu, F. Liu, Z. Guo, Metal-free boron catalyst with oriented crystal phase interfacial interaction for efficient electrochemical production of hydrogen peroxide, J. Mol. Struct. 1291 (2023) 135971. https://doi.org/10.1016/j.molstruc.2023.135971.
    [147] X. Duan, W. Li, Z. Ao, J. Kang, W. Tian, H. Zhang, S.-H. Ho, H. Sun, S. Wang, Origins of boron catalysis in peroxymonosulfate activation and advanced oxidation, J. Mater. Chem. A 7 (2019) 23904–23913. https://doi.org/10.1039/C9TA04885E.
    [148] S. Yagupov, M. Strugatsky, K. Seleznyova, Yu. Mogilenec, E. Milyukova, E. Maksimova, I. Nauhatsky, A. Drovosekov, N. Kreines, J. Kliava, Iron borate films: Synthesis and characterization, J. Magn. Magn. Mater. 417 (2016) 338–343. https://doi.org/10.1016/j.jmmm.2016.05.098.
    [149] M. Miao, H. Duan, J. Luo, X. Wang, Recent progress and prospect of electrodeposition-type catalysts in carbon dioxide reduction utilizations, Mater. Adv. 3 (2022) 6968–6987. https://doi.org/10.1039/D2MA00775D.
    [141] M.N. Hossain, L. Zhang, R. Neagu, E. Rassachack, Free-standing single-atom catalyst-based electrodes for CO2 reduction, Electrochem. Energy Rev. 7 (2024) 5. https://doi.org/10.1007/s41918-023-00193-7.
    [142] X. Shi, C. Chang, J. Xiang, Y. Xiao, L. Yuan, J. Sun, Synthesis of nanospherical Fe3BO6 anode material for lithium-ion battery by the rheological phase reaction method, J. Solid State Chem. 181 (2008) 2231–2236. https://doi.org/10.1016/j.jssc.2008.05.025.
    [143] Y. Liu, S. Peng, Y. Ding, C. Rong, J. Kim, J.P. Liu, Z.L. Wang, S. Sun, Synthesis and characterization of ferroferriborate (Fe3BO5) nanorods, Adv. Funct. Mater. 19 (2009) 3146–3150. https://doi.org/10.1002/adfm.200900900.
    [144] J. Liu, W. Zhao, B. Wang, H. Yan, Synthesis and enhanced photocatalytic activity of {1 0 1 ¯ 0} faceted hexagonal YBO3, Chem. Phys. Lett. 728 (2019) 62–69. https://doi.org/10.1016/j.cplett.2019.04.071.
    [145] S. Yagupov, M. Strugatsky, K. Seleznyova, Y. Mogilenec, N. Snegirev, N.V. Marchenkov, A.G. Kulikov, Y.A. Eliovich, K.V. Frolov, Y.L. Ogarkova, I.S. Lyubutin, Development of a synthesis technique and characterization of high-quality iron borate FeBO3 dingle crystals for applications in synchrotron technologies of a new generation, Cryst. Growth Des. 18 (2018) 7435–7440. https://doi.org/10.1021/acs.cgd.8b01128.
    [146] J. Wei, C. Yan, Y. Chen, Z. Cheng, F. Qiu, C. Tang, C. Yang, Z. Wei, A. Du, Investigation of α-Fe2O3 catalyst structure for efficient photocatalytic fenton oxidation removal of antibiotics: preparation, performance, and mechanism, RSC Adv. 14 (2024) 16649–16660. https://doi.org/10.1039/D4RA02282C.
    [156] A.V. Samrot, C.S. Sahithya, J. Selvarani A, S.K. Purayil, P. Ponnaiah, A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles, Curr. Res. Green Sustain. Chem. 4 (2021) 100042. https://doi.org/10.1016/j.crgsc.2020.100042.
    [148] A.B. Taha, M.Sh. Essa, B.T. Chiad, Spectroscopic study of iron oxide nanoparticles synthesized via hydrothermal method, Chem. Methodol. 6 (2022). https://doi.org/10.22034/chemm.2022.355199.1590.
    [149] M. Tadic, M. Panjan, V. Damnjanovic, I. Milosevic, Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method, Appl. Surf. Sci. 320 (2014) 183–187. https://doi.org/10.1016/j.apsusc.2014.08.193.
    [150] T. Adschiri, Y. Hakuta, K. Sue, K. Arai, Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions, J. Nanoparticle Res. 3 (2001) 227–235. https://doi.org/10.1023/A:1017541705569.
    [151] M. Gotić, S. Musić, Synthesis of nanocrystalline iron oxide particles in the iron(III) acetate/alcohol/acetic acid system, Eur. J. Inorg. Chem. 2008 (2008) 966–973. https://doi.org/10.1002/ejic.200700986.
    [161] K. Byrappa, T. Adschiri, Hydrothermal technology for nanotechnology, Prog. Cryst. Growth Charact. Mater. 53 (2007) 117–166. https://doi.org/10.1016/j.pcrysgrow.2007.04.001.
    [153] J. Yan, S. Mo, J. Nie, W. Chen, X. Shen, J. Hu, G. Hao, H. Tong, Hydrothermal synthesis of monodisperse Fe3O4 nanoparticles based on modulation of tartaric acid, Colloids Surf. Physicochem. Eng. Asp. 340 (2009) 109–114. https://doi.org/10.1016/j.colsurfa.2009.03.016.
    [154] H. Zheng, J. Schenk, D. Spreitzer, T. Wolfinger, O. Daghagheleh, Review on the oxidation behaviors and kinetics of magnetite in particle scale, Steel Res. Int. 92 (2021) 2000687. https://doi.org/10.1002/srin.202000687.
    [155] M.-K. Kim, I.-H. Jung, Coupled experimental phase diagram study and thermodynamic optimization of the Na2O–B2O3–Fe2O3 system in air, Calphad 76 (2022) 102364. https://doi.org/10.1016/j.calphad.2021.102364.
    [156] K. Kumari, S. Ram, R.K. Kotnala, Self-controlled growth of Fe3BO6 crystallites in shape of nanorods from iron-borate glass of small templates, Mater. Chem. Phys. 129 (2011) 1020–1026. https://doi.org/10.1016/j.matchemphys.2011.05.051.
    [157] B. Wu, S. Qi, X. Wu, H. Wang, Q. Zhuang, H. Yi, P. Xu, Z. Xiong, G. Shi, S. Chen, B. Wang, FeBO3 as a low cost and high-performance anode material for sodium-ion batteries, Chin. Chem. Lett. 32 (2021) 3113–3117. https://doi.org/10.1016/j.cclet.2021.03.014.
    [167] S. Shrestha, B. Wang, P. Dutta, Nanoparticle processing: Understanding and controlling aggregation, Adv. Colloid Interface Sci. 279 (2020) 102162. https://doi.org/10.1016/j.cis.2020.102162.
    [159] W. Zhao, T. Xu, T. Li, Y. Wang, H. Liu, J. Feng, S. Ding, Z. Li, M. Wu, Amorphous iron(III)‐borate nanolattices as multifunctional electrodes for self‐driven overall water splitting and rechargeable zinc–air battery, Small 14 (2018) 1802829. https://doi.org/10.1002/smll.201802829.
    [169] J. Ozaki, N. Kimura, T. Anahara, A. Oya, Preparation and oxygen reduction activity of BN-doped carbons, Carbon 45 (2007) 1847–1853. https://doi.org/10.1016/j.carbon.2007.04.031.
    [170] C. Huang, C. Chen, M. Zhang, L. Lin, X. Ye, S. Lin, M. Antonietti, X. Wang, Carbon-doped BN nanosheets for metal-free photoredox catalysis, Nat. Commun. 6 (2015) 7698. https://doi.org/10.1038/ncomms8698.
    [171] L. Cheng, J. Meng, X. Pan, Y. Lu, X. Zhang, M. Gao, Z. Yin, D. Wang, Y. Wang, J. You, J. Zhang, E. Xie, Two-dimensional hexagonal boron–carbon–nitrogen atomic layers, Nanoscale 11 (2019) 10454–10462. https://doi.org/10.1039/C9NR00712A.
    [172] S. Bhattacharyya, J. Hong, G. Turban, Determination of the structure of amorphous nitrogenated carbon films by combined Raman and x-ray photoemission spectroscopy, J. Appl. Phys. 83 (1998) 3917–3919. https://doi.org/10.1063/1.367312.
    [164] H. Zhao, Y. Wang, Y. Wang, T. Cao, G. Zhao, Electro-Fenton oxidation of pesticides with a novel Fe3O4@Fe2O3/activated carbon aerogel cathode: High activity, wide pH range and catalytic mechanism, Appl. Catal. B Environ. 125 (2012) 120–127. https://doi.org/10.1016/j.apcatb.2012.05.044.
    [174] K. Dastafkan, Y. Li, Y. Zeng, L. Han, C. Zhao, Enhanced surface wettability and innate activity of an iron borate catalyst for efficient oxygen evolution and gas bubble detachment, J. Mater. Chem. A 7 (2019) 15252–15261. https://doi.org/10.1039/C9TA03346G.
    [166] T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci. 254 (2008) 2441–2449. https://doi.org/10.1016/j.apsusc.2007.09.063.
    [176] X. Lu, C. Zhao, Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities, Nat. Commun. 6 (2015) 6616. https://doi.org/10.1038/ncomms7616.
    [168] L. Wang, F. Liu, A. Pal, Y. Ning, Z. Wang, B. Zhao, R. Bradley, W. Wu, Ultra-small Fe3O4 nanoparticles encapsulated in hollow porous carbon nanocapsules for high performance supercapacitors, Carbon 179 (2021) 327–336. https://doi.org/10.1016/j.carbon.2021.04.024.
    [169] Y. Sun, Z. Zhang, Structural roles of boron and silicon in the CaO-SiO2-B2O3 glasses using FTIR, Raman, and NMR spectroscopy, Metall. Mater. Trans. B 46 (2015) 1549–1554. https://doi.org/10.1007/s11663-015-0374-2.
    [170] M.H.A. Mhareb, S. Hashim, S.K. Ghoshal, Y.S.M. Alajerami, M.J. Bqoor, A.I. Hamdan, M.A. Saleh, M.K.B.A. Karim, Effect of Dy2O3 impurities on the physical, optical and thermoluminescence properties of lithium borate glass, J. Lumin. 177 (2016) 366–372. https://doi.org/10.1016/j.jlumin.2016.05.002.
    [171] G.D. Sorarù, N. Dallabona, C. Gervais, F. Babonneau, Organically modified SiO2−B2O3 gels displaying a high content of borosiloxane (B−O−Si⋮) Bonds, Chem. Mater. 11 (1999) 910–919. https://doi.org/10.1021/cm980353l.
    [172] A. Starobrat, T. Jaroń, W. Grochala, New hydrogen-rich ammonium metal borohydrides, NH4[M(BH4)4], M = Y, Sc, Al, as potential H2 sources, Dalton Trans. 47 (2018) 4442–4448. https://doi.org/10.1039/C7DT03926C.
    [173] D.A. Garcia-hernandez, F. Cataldo, A. Manchado, About the iron carbonyl complex with C60 and C70 fullerene: [Fe(CO)4(η2C60)] and [Fe(CO)4(η2C70)], Fuller. Nanotub. Carbon Nanostructures 24 (2016) 225–233. https://doi.org/10.1080/1536383X.2015.1125343.
    [174] G. Busca, V. Lorenzelli, Infrared study of CO2 adsorption on haematite, Mater. Chem. 5 (1980) 213–223. https://doi.org/10.1016/0390-6035(80)90044-9.
    [184] K. Chen, L. Fang, T. Zhang, S.P. Jiang, New zinc and bismuth doped glass sealants with substantially suppressed boron deposition and poisoning for solid oxide fuel cells, J Mater Chem A 2 (2014) 18655–18665. https://doi.org/10.1039/C4TA02951H.
    [185] C. Huber, S.S. Jahromy, F. Birkelbach, J. Weber, C. Jordan, M. Schreiner, M. Harasek, F. Winter, The multistep decomposition of boric acid, Energy Sci. Eng. 8 (2020) 1650–1666. https://doi.org/10.1002/ese3.622.
    [186] R.V. Siriwardane, J.A. Poston Jr, E.P. Fisher, M.-S. Shen, A.L. Miltz, Decomposition of the sulfates of copper, iron (II), iron (III), nickel, and zinc: XPS, SEM, DRIFTS, XRD, and TGA study, Appl. Surf. Sci. 152 (1999) 219–236. https://doi.org/10.1016/S0169-4332(99)00319-0.
    [187] J. Huang, W. Sun, Z. Zhang, Z. Ling, X. Fang, Thermal protection of electronic devices based on thermochemical energy storage, Appl. Therm. Eng. 186 (2021) 116507. https://doi.org/10.1016/j.applthermaleng.2020.116507.
    [179] H. Makram, L. Touron, J. Loriers, Phase relations in the system Fe3O3-B2O3 and its application in single crystal growth of FeBO3, J. Cryst. Growth 13–14 (1972) 585–587. https://doi.org/10.1016/0022-0248(72)90522-2.
    [180] T.A. Taha, A.A. Azab, E.H. El-Khawas, Comprehensive study of structural, magnetic and dielectric properties of borate/Fe3O4 glass nanocomposites, J. Electron. Mater. 49 (2020) 1161–1166. https://doi.org/10.1007/s11664-019-07825-z.
    [190] S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends, Catal. Today 147 (2009) 1–59. https://doi.org/10.1016/j.cattod.2009.06.018.
    [182] S. Shang, Y. Wang, Z.-K. Liu, C.-E. Yang, S. Yin, Band structure of FeBO3: Implications for tailoring the band gap of nanoparticles, Appl. Phys. Lett. 91 (2007) 253115. https://doi.org/10.1063/1.2824869.
    [192] P.O. Oladoye, T.O. Ajiboye, E.O. Omotola, O.J. Oyewola, Methylene blue dye: Toxicity and potential elimination technology from wastewater, Results Eng. 16 (2022) 100678. https://doi.org/10.1016/j.rineng.2022.100678.
    [193] I. Raheb, M.S. Manlla, Kinetic and thermodynamic studies of the degradation of methylene blue by photo-Fenton reaction, Heliyon 7 (2021) e07427. https://doi.org/10.1016/j.heliyon.2021.e07427.
    [194] J. Ma, L. Chen, Y. Liu, T. Xu, H. Ji, J. Duan, F. Sun, W. Liu, Oxygen defective titanate nanotubes induced by iron deposition for enhanced peroxymonosulfate activation and acetaminophen degradation: Mechanisms, water chemistry effects, and theoretical calculation, J. Hazard. Mater. 418 (2021) 126180. https://doi.org/10.1016/j.jhazmat.2021.126180.
    [186] B. Lei, D. Xu, B. Wei, T. Xie, C. Xiao, W. Jin, L. Xu, In Situ Synthesis of α-Fe2O3 /Fe3O4 heterojunction photoanode via fast flame annealing for enhanced charge separation and water oxidation, ACS Appl. Mater. Interfaces 13 (2021) 4785–4795. https://doi.org/10.1021/acsami.0c19927.
    [187] J. Kaushik, Twinkle, Tisha, Nisha, A. Baig, Sonal, P. Dubey, S.K. Sonkar, Photoactive Fe3O4@Fe2O3 synthesized from industrial iron oxide dust for Fenton-free degradation of multiple organic dyes, Ind. Eng. Chem. Res. 62 (2023) 10487–10497. https://doi.org/10.1021/acs.iecr.3c01098.
    [188] E. Bistas, D.K. Sanghavi, Methylene blue, in: StatPearls, StatPearls Publishing, Treasure Island (FL), 2024. http://www.ncbi.nlm.nih.gov/books/NBK557593/.
    [189] C. Wang, R. Jiang, J. Yang, P. Wang, Enhanced heterogeneous fenton degradation of organic pollutants by CRC/Fe3O4 catalyst at neutral pH, Front. Chem. 10 (2022). https://doi.org/10.3389/fchem.2022.892424.
    [199] P. Pędziwiatr, F. Mikołajczyk, D. Zawadzki, K. Mikołajczyk, A. Bedka, Decomposition of hydrogen peroxide - kinetics and review of chosen catalysts, Acta Innov. (2018) 45–52. https://doi.org/10.32933/ActaInnovations.26.5.
    [191] J. Xiao, S. Guo, D. Wang, Q. An, Fenton-like reaction: Recent advances and new trends, Chem. – Eur. J. 30 (2024) e202304337. https://doi.org/10.1002/chem.202304337.
    [201] R.J. Baxter, P. Hu, Insight into why the Langmuir–Hinshelwood mechanism is generally preferred, J. Chem. Phys. 116 (2002) 4379–4381. https://doi.org/10.1063/1.1458938.
    [193] R. Prins, Eley–Rideal, the other mechanism, Top. Catal. 61 (2018) 714–721. https://doi.org/10.1007/s11244-018-0948-8.
    [203] H.D. Tran, D.Q. Nguyen, P.T. Do, U.N.P. Tran, Kinetics of photocatalytic degradation of organic compounds: a mini-review and new approach, RSC Adv. 13 (2023) 16915–16925. https://doi.org/10.1039/D3RA01970E.
    [195] Y. Zong, L. Chen, Y. Zeng, J. Xu, H. Zhang, X. Zhang, W. Liu, D. Wu, Do we appropriately detect and understand singlet oxygen possibly generated in advanced oxidation processes by electron paramagnetic resonance spectroscopy?, Environ. Sci. Technol. 57 (2023) 9394–9404. https://doi.org/10.1021/acs.est.3c01553.
    [196] J. Tang, R. Xu, G. Sui, D. Guo, Z. Zhao, S. Fu, X. Yang, Y. Li, J. Li, Double‐shelled porous g‐C3N4 nanotubes modified with amorphous Cu‐doped FeOOH nanoclusters as 0D/3D non‐homogeneous photo‐Fenton catalysts for effective removal of organic dyes, Small 19 (2023) 2208232. https://doi.org/10.1002/smll.202208232.
    [206] S.N. Ahmed, W. Haider, Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review, Nanotechnology 29 (2018) 342001. https://doi.org/10.1088/1361-6528/aac6ea.
    [198] F. Rizzi, R. Castaldo, T. Latronico, P. Lasala, G. Gentile, M. Lavorgna, M. Striccoli, A. Agostiano, R. Comparelli, N. Depalo, M.L. Curri, E. Fanizza, High surface area mesoporous silica nanoparticles with tunable size in the sub-micrometer regime: Insights on the size and porosity control mechanisms, Molecules 26 (2021) 4247. https://doi.org/10.3390/molecules26144247.
    [199] D.B. Emrie, Sol–gel synthesis of nanostructured mesoporous silica powder and thin films, J. Nanomater. 2024 (2024) 6109770. https://doi.org/10.1155/2024/6109770.
    [209] R. Huang, B. Lan, Z. Chen, H. Yan, Q. Zhang, J. Bing, L. Li, Catalytic ozonation of p-chlorobenzoic acid over MCM-41 and Fe loaded MCM-41, Chem. Eng. J. 180 (2012) 19–24. https://doi.org/10.1016/j.cej.2011.10.086.
    [201] D. Flores, C.M.R. Almeida, C.R. Gomes, S.S. Balula, C.M. Granadeiro, Tailoring of mesoporous silica-based materials for enhanced water pollutants removal, Molecules 28 (2023) 4038. https://doi.org/10.3390/molecules28104038.
    [211] S. Barakan, V. Aghazadeh, Structural modification of nano bentonite by aluminum, iron pillarization and 3D growth of silica mesoporous framework for arsenic removal from gold mine wastewater, J. Hazard. Mater. 378 (2019) 120779. https://doi.org/10.1016/j.jhazmat.2019.120779.
    [203] A.-M. Putz, M. Ciopec, A. Negrea, O. Grad, C. Ianăşi, O.I. Ivankov, M. Milanović, I. Stijepović, L. Almásy, Comparison of structure and adsorption properties of mesoporous silica functionalized with aminopropyl groups by the co-condensation and the post-grafting methods, Materials 14 (2021) 628. https://doi.org/10.3390/ma14030628.
    [204] P.S. Shinde, P.S. Suryawanshi, K.K. Patil, V.M. Belekar, S.A. Sankpal, S.D. Delekar, S.A. Jadhav, A brief overview of recent progress in porous silica as catalyst supports, J. Compos. Sci. 5 (2021) 75. https://doi.org/10.3390/jcs5030075.
    [214] M. Xia, C. Chen, M. Long, C. Chen, W. Cai, B. Zhou, Magnetically separable mesoporous silica nanocomposite and its application in Fenton catalysis, Microporous Mesoporous Mater. 145 (2011) 217–223. https://doi.org/10.1016/j.micromeso.2011.05.017.
    [215] J.-S. Choi, S.-S. Yoon, S.-H. Jang, W.-S. Ahn, Phenol hydroxylation using Fe-MCM-41 catalysts, Catal. Today 111 (2006) 280–287. https://doi.org/10.1016/j.cattod.2005.10.037.
    [216] N. Ferroudj, J. Nzimoto, A. Davidson, D. Talbot, E. Briot, V. Dupuis, A. Bée, M.S. Medjram, S. Abramson, Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants, Appl. Catal. B Environ. 136–137 (2013) 9–18. https://doi.org/10.1016/j.apcatb.2013.01.046.
    [208] M. Jourshabani, A. Badiei, Z. Shariatinia, N. Lashgari, G. Mohammadi Ziarani, Fe-supported SBA-16 type cagelike mesoporous silica with enhanced catalytic activity for direct hydroxylation of benzene to phenol, Ind. Eng. Chem. Res. 55 (2016) 3900–3908. https://doi.org/10.1021/acs.iecr.5b04976.

    QR CODE