研究生: |
邱士芳 Shih-Fang Chiu |
---|---|
論文名稱: |
鼠籠式感應電動機之精確最大轉矩導演與分析 Accurate Maximum Torque Derivation and Analysis of Squirrel-Cage Induction Motors |
指導教授: |
潘晴財
Ching-Tsai Pan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 鼠籠式感應電動機 、最大轉矩 、廣義磁場導向控制 、弱磁區 |
外文關鍵詞: | squirrel-cage induction motors, maximum torque, general flux oriented control, field-weakening region |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鼠籠式感應電動機因其結構簡單、價格便宜與耐受環境力強,故廣泛用於各領域;然而,由於其複雜的動態數學模式,使得一些基本場導向控制特性並未為吾人所充分瞭解,因此本論文首先即導演鼠籠式感應電動機之廣義間接磁場導向控制(General flux oriented control, GFOC)之動態模式與所需滿足之限制條件,其特點是目前文獻上之轉、定子磁場導向控制及氣隙磁場導向控制均為廣義磁場導向控制法之特例。易言之,此舉甚方便統合現有各種場導向控制策略,甚至開發新型導向控制策略。本論文之第一貢獻便是導演吾人所熟悉之轉子磁場導向控制其四象限運作區之最大轉矩解析式。雖然第一、三及第二、四象限之轉矩曲線仍見其對稱性,但若考慮定子電阻Rs時,則第一、四或二、三象限之弱磁區轉矩曲線並不對稱,若忽略Rs時,會高估第一象限弱磁區之最大轉矩,而低估第四象限弱磁區之最大轉矩,故在高轉速區若欲獲得最快速響應,則需考慮Rs。本論文之第二貢獻便是進一步探討及分析廣義磁場導向控制之穩態特性。結果發現不論廣義磁場導向控制或各種場導向控制在定轉矩區其最大轉矩、滑差頻率與銅損均完全相同。此外,就各種磁交鏈大小而言,傳統各式場導向控制均發生在接近其磁交鏈特性曲線之谷底,此意謂可獲得較低的鐵損。本論文之第三貢獻即為了方便未來整合有關廣義磁場導向控制在弱磁區最大轉矩之研析,故提出一廣義感應電動機阻抗,甚方便將有關電壓限制的條件精確地映射至電流平面上。
Squirrel-cage induction motors, due to their simple structure, cheaper cost and ruggedness, have been widely used in various applications. However, due to the complex dynamic model, the corresponding field oriented control characteristics are not well grasped by general engineers. Hence, in this thesis, a general flux oriented control is first proposed to unify the existing field oriented controls for easy understanding the principle. In other words, the existing field oriented controls become special cases of the proposed general flux oriented control. Also, new flux oriented controls can be derived from the proposed general control.
In addition, contributions of this thesis can be summarized as follows. First, accurate theoretical maximum torque of the familiar rotor flux oriented control is derived. It is found that if the stator resistance is neglected as usually done in the literature, then the corresponding maximum torque may either be over estimated or under estimated in the field weakening region. Second, detailed steady state characteristics of the proposed general flux oriented control are analyzed. It is interesting to see that, in spite of different choices of the parameters, the maximum torque in the constant torque region, and the corresponding slip as well as copper loss are identical. Moreover, the flux linkage magnitude of the existing field oriented controls happen to be located near the local minimum which implies the resulting core loss will also be smaller. Finally, due to limitation of time, a general equivalent impedance expression is derived for the general flux oriented control for convenient transforming the voltage constraint into corresponding current constraint such that the accurate maximum torque in the field weakening region can be explored in the future.
[1] F. Blaschke, “The principle of field orientation as applied to the new transvector closed-loop control system for rotating field machines”, Siemens Rev., vol. 34, 1972, pp.217-220.
[2] T. A. Lipo, “Recent progress in the development of solid-state ac motor drives,” IEEE Trans. on Power Elec., vol. 3, April 1988, pp. 105-117.
[3] P. C. Sen, “Electric motor drives and control-past, present, and future,” IEEE Trans. on Ind. Elec., vol. 37, December 1990, pp. 562-575.
[4] B. K. Bose, “Recent advances in power electronics,” IEEE Trans. on Power Elec., vol. 7, January 1992, pp. 2-16.
[5] N. Matsui, “Recent trends in ac motion control,” IEEE IECON 1992, pp. 25-30.
[6] K. Kamiyama, T. Ohmae, and T. Sukegawa, “Application tends in ac motor drives,” IEEE IECON 1992, pp.31-36.
[7] N. Mat Sui, “Recent trends in ac motor control,” IEEE IECON 1992, pp.25-30.
[8] A. Nabae, K. Otsuka, H. Uchino and R. Kurosawa, “An approach to flux control of induction motor operated with variable-frequency power supply”, IEEE Trans. on Ind. Appl., vol. IA-16, May/June 1980, pp. 342-350.
[9] B. K. Bose, Power electronic and ac drives, Prentice-Hall, ENGLEWOOD CLIFFS, ISBN:076322, 1986.
[10] H. H. Huffman, “Introduction to solid-state adjustable speed drives”, IEEE Trans. on Ind. Appl., vol. 26, July/August 1990, pp. 671-678.
[11] B. K. Bose, “Variable frequency drives technology and applications”, IEEE ISIE, 1993, pp. 1-18.
[12] N. Mogan, T. M. Undeland, and W. P. Robbins, Power Electronics, JOHN WILEY, ISBN:0-471-22693-9,2003.
[13] S. H. Kim, S. K. Sul, S. K. Park, and S. D. Kwanak, ” Maximum torque control of an Induction machine in the field weakening region,” IEEE CNF, vol.1, October 1993, pp.401-407.
[14] S. H. Kim, and S. K. Sul, “Voltage control strategy for maximum torque operation of an induction machine in the field weakening region,” IEEE IECON 1994, pp.599-604.
[15] S. H. Kim, and S. K. Sul, “Maximum torque control of an induction machine in the field weakening region,” IEEE Trans. on Ind. Appl., vol. 31, July/August 1995, pp.787-794.
[16] D.W. Novotny and T.A. Lipo, Vector control and dynamics of ac drives, Claredon Press. OXFORD, February, 1996.
[17] D. W. Novotny and R D. Lorenz, “Introduction to field orientation and high performance ac drives”, IEEE CNF, 1985, Sec.1 and 6.
[18] R. Gabriel, W. Leonhard, and C. Nordby, “Field-oriented control of a standard ac motor using microprocessors”, IEEE Trans. on Ind. Appl., vol. IA-16, March/April 1980, pp. 186-192.
[19] X. Xu and D. W. Novotny, “Selecting the flux reference for induction machine drives in the field weakening region,” IEEE CNF on Ind. Appl., September/October 1991, pp. 361-367.
[20] Peter Vas, Electrical machines and drives, Claredon Press. OXFORD, 1992.
[21] S. H. Kim and S. K. Sul, “Voltage control strategy for maximum torque operation of an induction machine in the field-weakening region”, IEEE Trans. on Ind. Elec., vol. 44, August 1997, pp. 512-518.
[22] R. S. Wieser, “Optimal rotor flux regulation for fast- accelerating induction machines in the field-weakening region”, IEEE Trans. on Ind. Appl., vol. 34, September. 1998, pp. 1081 -1087.
[23] R. W. De. Doncker and D. W. Novotny, “The universal field oriented controller,” IEEE Trans. on Ind. Appl., vol. 30, January/February 1994.
[24] F. Briz, A. Diez, M. W. Degner, and R. D. Lorenz, ”Current and flux regulation in field-weakening operation [of induction motors],” IEEE Trans. on Ind. Appl., , vol. 37, Jane 2001, pp. 42-50.
[25] L. Harnefors, K. Pietilainen, and L. Gertmar, “Torque-maximizing field-weakening control: design, analysis, and parameter selection”, IEEE Trans. on Ind. Elec., vol. 48, February 2001, pp. 161-168.
[26] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of electric Machinery and driver systems, WILEY INTERSCIENCE, ISBN:0-471-14326-X,2002.
[27] Y.S Lai, ”Modeling and vector control of induction machines- A new unified approach,” IEEE CNF, vol 1, January/February 1999, pp. 47-52.
[28] T. A. Rahavendiran, A.S. Saleen, and D.P. Job, ”PC based rotor flux oriented control of induction motors using DSP,” IEEE CNF on Power Elec., vol.1,Jane 1996, pp.207-210.
[29] G. John, W. Erdman, R. Hudson, C.S. Fan, and S. Mahajan, ”Stator flux estimation from inverter switching states for the field oriented control of induction generators,” IEEE Trans. on Ind. Appl. ,vol.1, October 1995, pp182-188.
[30] X. Xu, R. De Donker and D. W. Novotny, “ Stator flux orientation control of induction machines in the field weakening region,” IEEE CNF on Ind. Appl., vol.1 October , Rec., 1988 , pp.437-443.
[31] R. De. Doncker and D.W. Novotny, ”The universal field oriented controller,” IEEE Trans. on Ind. Appl., vol.30, January /February 1994, pp.92-100.
[32] R. Joetten and H. Schierling, “Control of the induction machine in the field weakening range,” IFAC 1983, pp.297-304.
[33] C. T. Pan and T. Yu. Chang,”A field acceleration method for induction motor drive using a novel space vector based current controller.” IEEE Trans. on Ind. Elec., vol.2, May 1992, pp.663-667.
[34] 李宜虎,「新型感應馬達轉子磁場導向最大轉矩控制策略」,碩士論文,2000年。