簡易檢索 / 詳目顯示

研究生: 張藝騰
論文名稱: 以三維非慣性雙重網格座標系統探討微氣泡於液體中自由浮升之暫態流場研究
指導教授: 李雄略
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 56
中文關鍵詞: 氣泡暫態浮升三維
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微氣泡的上浮研究一直是困擾學者的問題,現今的實驗設備無法觀察小於 的氣泡,因此透過數值模擬的方式計算微氣泡的行為是本文的目的。本文提出雙重網格方法(two-region method)應用於求解氣泡的三維暫態流場,透過雙重網格系統,可在氣泡周圍想要觀察的地方使用較密的網格來觀察計算,如此不但能夠減少程式記憶體的浪費,同時也能有較準確的成果。
    計算移動氣泡的暫態流場,最佳的辦法就是應用非慣性座標系統(noninertial frame of reference),使座標軸跟隨著氣泡移動,如此作法可以將氣泡固定在計算流域的中心,不至於因為氣泡位置網格移動造成資料傳遞不連續,而形成誤差,並且使用雙重網格方法求解流場的部份,求出流場之後,即可觀察各個不同直徑的氣泡的暫態行為,同時與實驗數據比較模擬結果的正確性,本文的方法精確性頗佳,希望將此方法獻給各位研究者參考。


    摘要 I 誌謝 II 目錄 III 圖目錄 V 符號說明 VI 第一章 緒論 1 1.1前言 1 1.2文獻回顧 1 第二章 理論分析 6 2.1問題描述 6 2.2建立統御方程式及其無因次化 6 2.3非慣性座標系統(noninertial frame of reference)下的動量方程式 11 2.4邊界條件 12 2.4.1內網格系統 12 2.4.2外網格系統 13 第三章 數值方法 15 3.1動量方程式之差分 16 3.2壓力連結方程式-利用NAPPLE algorithm求解 19 3.3 計算流程 23 3.4模擬參數 24 第四章 結果與討論 27 4.1流場與壓力場 27 4.2 內外網格系統重疊部份的正確性 28 4.3暫態的壓力場變化 29 4.4 與實驗結果比較 30 4.5 管子長短對計算結果的影響 31 第五章 結論 32 參考文獻 33

    [1] Duineveld, P. C., 1995, “The Rise Velocity and Shape of Bubbles in Pure Water at High Reynolds Number,” J. Fluid Mechanics, 292, pp.325-332.
    [2] Krishna, R., Urseanu, M. I., van Baten, J. M., and Ellenberger, 1999,“Wall Effects on the Rise of Single Gas Bubbles in Liquids,” Int.Comm. Heat Mass Transfer, 26, pp. 781-790.
    [3] Ortiz-Villafuerte, J., Hassan, Y.A., and Schmidl, W. D., 2001, “Rocking Motion, Trajectory and Shape of Bubbles Rising in Small Diameter Pipes,” Experimental Thermal and Fluid Science, 25, pp. 43-53.
    [4] Wu, M., and Gharib, M., 2002, “Experimental Studies on the Shape and Path of Small Air Bubbles Rising in Clean Water,” Physics of Fluids, 14, pp. L49-L52.
    [5] Takemura, F., Takagi, S., and Magnaudet, J., 2002, “Drag and Lift Forces on a Bubble Rising near a Vertical Wall in a Viscous Liquid,” J. Fluid Mech., 461, pp. 277-300.
    [6] Hirt, C. W., and Nichols, B. D., 1981, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” J. Computational Physics, 39, pp.201.
    [7] Unverdi, S., and Tryggvason, G., 1992, “A Front-Tracking Method for Viscous Incompressible Multi-Fluid Flows,” J. Computational Physics, 100, pp. 25-37.
    [8] Shin, S., and Juric, F., 2002, “Modeling Three-Dimensional Multiphase Flow Using a Level Contour Reconstruction Method for Front Tracking without Connectivity,” J. Computational Physics, 180, pp. 427-470.
    [9] Legendre, D., and Maganaudet, J., 1998, “The Lift Force on a Spherical Bubble in a Viscous Linear Shear Flow,” J. Fluid Mech., 368, pp. 81-126.
    [10] Lee, S. L., and Sheu, S. R., 2001, “A New Numerical Formulation for Incompressible Viscous Free Surface Flow without Smearing the Free Surface,”International Journal of Heat and Mass Transfer, 44, pp. 1831-1848.
    [11] Lee, S. L., and Liao, W. C., 2005, “Numerical Simulation of a Fountain Flow on Nonstaggered Cartesian Grid System,” 2005 ASME Fluid Engineering Division Summer Meeting and Exhibition.
    [12] Lee, S. L., and Lee, H. D., 2003, “Evolution of the Liquid Meniscus in a Capillary-Force-Dominant Flow, ” The 14th International Symposium on Transport Phenomena, Bali, Indonesia.
    [13] Lee, S. L., and Sheu, S. R., 2003, “Filling Process in an Open Tank, ”ASME J. of Fluids Engineering, 125, pp.1016-1021.
    [14]Lee, S. L., and Tzong, R. Y., 1992, “Artificial Pressure for Pressure-Linked Equation,” International Journal of Heat and Mass Transfer, 35, pp. 2705-2716.
    [15] Lee, S. L., 1989, “Weighting Function Scheme and Its Application on Multidimensional Conservation,” International Journal of Heat and Mass Transfer, 32, pp. 2065-2073.
    [16] Lee, S. L., 1989, “A Strongly-Implicit Solver for Two-Dimensional Elliptic Differential Equations,” Numerical Heat Transfer, 16, pp. 161-178.
    [17] Lee, S. L., and Tzong, R. Y., 1991, “An Enthalpy Formulation for Phase Change Problems with a Large Thermal Diffusivity Jump across the Interface,” International Journal of Heat and Mass Transfer, 34, pp. 1491-1502.
    [18] Li, L., Sherwin, S. J. and Bearman, P. W., 2002, “A Moving Frame of Reference Algorithm for Fluid/Structure Interaction of Rotating and Translating Bodies,” Int. J. Numer. Meth. Fluids, 38, pp. 187-206.
    [19] 張元榕,2004,微氣泡於小口徑垂直方管內浮升之研究,
    國立清華大學碩士論文,新竹,臺灣。
    [20] Hua, J. S., Stene, J. F., and Lin, P., 2008 , “ Numerical Simulation of 3D Bubbles Rising in Viscous liquids Using a Front Tracking Method,” Journal of Computational Physics, 227, pp.3358-3382.
    [21] Tomiyama, A., Celata, G. P., Hosokawa, S., and Yoshida, S., 2002,“Terminal Velocity of Single Bubbles in Surface Tension Force Dominant Regime,” International Journal of Multiphase Flow, 28, pp.1497-1519.
    [22] Hadamard, J., 1911, “Mouvement Permanent Lent d’une Sphere Liquide Visqueuse dansun Liquid Visqueux,” C., R., Acad. Sci. Paris Ser. A-B, 152, pp. 1735-1739.
    [23] Magnaudet J., Rivero, M., and Fabre, J., 1995, “Accelerated Flow past a Rigid Spherical Bubble. Part 1. Steady Straining Flow,” J.Fluid Mechanics, 284, pp. 97-135.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE