簡易檢索 / 詳目顯示

研究生: 龔信文
Kung, Hsin-Wen
論文名稱: 雙子空間非負圖形嵌入表示法及其於人臉表情辨識的應用
Dual Subspace Nonnegative Graph Embedding for Person-Invariant Facial Expression Recognition
指導教授: 許秋婷
Hsu, Chiou-Ting
口試委員: 王聖智
Wang, Sheng-Jyh
簡仁宗
Chien, Jen-Tzung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 44
中文關鍵詞: 非負矩陣分解臉部表情辨識圖形嵌入表示法雙子空間
外文關鍵詞: Nonnegative Matrix Factorization, Facial Expression Recognition, Graph-Embedding, Dual Subspace
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不同身份的人具有不同的面貌,對於相同表情的詮釋方式也隨之不同。此一受身份影響的特性,大大增加自動化表情辨識的困難度。在本文之中,我們提出雙子空間的非負圖形嵌入表示法,將臉部表情影像使用身份以及表情子空間加以描述。其中,身份子空間描述和身份有關的臉部變異;而表情子空間則描述不受身份影響的表情變異。透過本方法,我們可將輸入的臉部影像,透過對應的非負基底,分解為身份部份和表情部份。除此之外,對於相同表情的類別內變異,我們重新設計表情子空間的圖形限制以解決此一問題。我們透過CK+、JAFFE和TFEID三種人臉表情資料庫進行驗證;實驗結果顯示,我們的方法均優於現有的表情辨識方法。


    Different persons usually exhibit various appearance changes when posing the same expression. This person-dependent behavior often complicates automatic facial expression recognition. In this thesis, to address the person-independent expression recognition problem, we propose a Dual Subspace Nonnegative Graph Embedding (DSNGE) to represent expressive images using two subspaces: identity and expression subspaces. The identity subspace characterizes person-dependent appearance variations; whereas the expression subspace characterizes person-independent expression variations. With DSNGE, we decompose each facial image into an identity part and an expression part represented by their corresponding nonnegative bases. We also address the intra-class variations issue in the expression recognition problem, and further devise a graph-embedding constraint on the expression subspace to tackle this problem. Our experimental results show that the proposed DSNGE outperforms other graph-based nonnegative factorization methods and existing expression recognition methods on CK+, JAFFE and TFEID databases.

    中文摘要 1 Abstract 2 1. Introduction 4 2. Related Work 9 2.1 Nonnegative Matrix Factorization (NMF) 9 2.2 Graph-based Nonnegative Matrix Factorization 10 2.3 Robust Nonnegative Graph Embedding 13 3. Overview: Dual Subspace Nonnegative Matrix Factorization 14 4. Proposed Method 17 4.1 Remarks on Dual Subspace Nonnegative Matrix Factorization 17 4.2 Dual Subspace Nonnegative Graph Embedding 18 4.3 Multiplicative Iterative Solution 20 4.3.1 Optimize W for a given H 20 4.3.2 Optimize H for a given W 22 4.4 Comparison with DSNMF 25 5. Experimental Results 27 5.1 Database and Setting 27 5.2 Evaluation of Facial Representation 28 5.3 Effect of λI and λE 29 5.4 Comparison with Other Facial Representation Algorithms 30 5.5 Comparison with State-of-the-Art Recognition Algorithms 31 6. Limitation and Discussion 36 7. Conclusions 38 8. References 39

    [1] R. Valenti, A. Jaimes, and N. Sebe, “Sonify Your Face: Facial Expressions for Sound Generation,” ACM Int’l. Conf. Multimedia, 2010.
    [2] S. Marcos, J. Gomez-Garcia-Bermejo, E. Zalama, and J. Lopez, “Nonverbal Communication with a Multimodal Agent via Facial Expression Recognition,” IEEE Int’l. Conf. Robotics and Automation, pp. 1199-1204, 2011.
    [3] K. Mu, J. Tao, and M. Yang, “Animating a Chinese Interactive Virtual Character,” IEEE Int’l. Machine Learning for Signal Processing Workshop, 2011.
    [4] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, pp. 711-721, 1997.
    [5] J. Zou, Q. Ji, and G. Nagy, “A Comparative Study of Local Matching Approach for Face Recognition,” IEEE Trans. Image Processing, vol. 16, no. 10, pp. 2617-2628, 2007.
    [6] G. Zhao, and M. Pietikainen, “Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, pp. 915-928, 2007.
    [7] C. Shan, S. Gong, and P. W. McOwan, “Facial Expression Recognition Based on Local Binary Patterns: A Comprehensive Study,” Image and Vision Computing, vol. 27, no. 6, pp. 803-816, 2009.
    [8] T. Jabid, M. H. Kabir, and O. Chae,“Facial Expression Recognition Using Local Directional Pattern (LDP),” IEEE Int’l Conf. Image Processing, pp. 1605-1608, 2010.
    [9] A. R. Rivera, R. Castillo, and O. Chae, “Local Directional Number Pattern for Face Analysis: Face and Expression Recognition, ” IEEE Trans. Image Processing, vol. 22, no. 5, pp. 1740-1752, 2013.
    [10] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active Shape Models - Their Training and Applications,” Computer Vision and Image Understanding, vol. 61, pp. 38-59, 1995.
    [11] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active Appearance Models,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 681-5, 2001.
    [12] S. B. Gokturk, J.Y. Bouguet, C. Tomasi, and B. Girod, “Model-Based Face Tracking for View Independent Facial Expression Recognition,” Proc. IEEE Int’l. Conf. Face and Gesture Recognition, pp. 272-278, 2002.
    [13] B. Schölkopf. Support Vector Learning. R. Oldenbourg Verlag, Munich, 1997.
    [14] Y. L. Tian, T. Kanade, and J. F. Cohn, “Recognizing Action Units for Facial Expression Analysis,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 2, pp. 97-115, 2001.
    [15] D. D. Lee, and H. S. Seung, “Learning the Parts of Objects by Non-negative Matrix Factorization,” Nature, vol. 401, pp.788–791, 1999.
    [16] D. D. Lee, and H. S. Seung. “Algorithms for non-negative matrix factorization,” Advances in Neural Information Processing Systems, pages 556–562, 2001.
    [17] D. Cai, X. He, X. Wu, and J. Han, “Non-negative Matrix Factorization on Manifold,” IEEE Int’l. Conf. Data Mining, pp. 63-72, 2008.
    [18] R. Zhi, M. Flierl, Q. Ruan, and W. B. Kleijn, “Graph-Preserving Sparse Nonnegative Matrix Factorization with Application to Facial Expression Recognition,” IEEE Trans. SMC-Part B: Cybernetics, vol. 41, no. 1, pp. 38-52, 2011.
    [19] J. Yang, S. Yan, Y. Fu, X. Li, and T. Huang, “Non-negative Graph Embedding,” IEEE Conf. Computer Vision and Pattern Recognition, 2008.
    [20] X. Liu, S. Yan, and H. Jin, “Projective Nonnegative Graph Embedding,” IEEE Trans. Image Processing, vol. 19, no. 5, pp. 1126-1137, 2010.
    [21] H. Zhang, Z. J. Zha, S. Yan, M. Wang, and T. S. Chua, “Robust Non-negative Graph Embedding: Towards Noisy Data, Unreliable Graphs, and Noisy Labels,” IEEE Conf. Computer Vision and Pattern Recognition, 2012.
    [22] Yi-Han Tu, and Chiou-Ting Hsu, “Dual subspace nonnegative matrix factorization for person-invariant facial expression recognition,” IEEE Int’l Conf. Pattern Recognition, pp. 2391-2394, 2012.
    [23] S. Yan, D. Xu, B. Zhang, Q. Yang, H. Zhang, and S. Lin, “Graph Embedding and Extensions: A General Framework for Dimensionality Reduction,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, pp. 40-51, 2007.
    [24] O. Rudovic, I. Patras, and M. Pantic, “Coupled Gaussian Process Regression for Pose-Invariant Facial Expression Recognition,” European Conference on Computer Vision, vol. 6312, pp. 350-363, 2010.
    [25] G. Zhao and M. Pietikainen, “Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, pp. 915-928, 2007.
    [26] B. Fasel and J. Luttin, “Automatic Facial Expression Analysis: Survey,” Pattern Recognition, vol. 36, no. 1, pp. 259-275, 2003.
    [27] P. Martins and J. Batista, “Identity and Expression Recognition on Low Dimensional Manifolds,” IEEE Int’l. Conf. Image Processing, 2009.
    [28] Kai-Tai Song and Yi-Wen Chen, “A Design for Integrated Face and Facial Expression Recognition,” IEEE Conf. Industrial Electronics Society, 2012.
    [29] G. Donato, M. S. Bartlett, J. C. Hager, P. Ekman, and T. J. Sejnowski, “Classifying Facial Actions,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 10, pp. 974-989, 1999.
    [30] S. Zafeiriou, and M. Petrou, “Sparse Representations For Facial Expressions Recognition via l1 optimization,” IEEE Conf. Computer Vision and Pattern Recognition, pp.32-39, 2010.
    [31] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews, “The Extended Cohn-Kanade Dataset (CK+): A complete expression dataset for action unit and emotion-specified expression,” IEEE Conf. Computer Vision and Pattern Recognition Workshops, pp. 94-101, 2010.
    [32] M. J. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding Facial Expressions with Gabor Wavelets,” IEEE Int’l. Conf. Automatic Face and Gesture Recognition, pp. 200-205, 1998.
    [33] The Taiwanese Facial Expression Image Database (TFEID), http://bml.ym.edu.tw/~download/html/news.htm
    [34] E. Candés, and T. Tao, “Decoding by linear programming,” IEEE Trans. Information Theory, vol. 51, no. 12, pp.4203-4215, 2005.
    [35] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. Huang, and S. Yan “Sparse Representation for Computer Vision and Pattern Recognition, ” Proceedings of IEEE, 2009.
    [36] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, “RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2233-2246, 2012.
    [37] S. Yang, and B. Bhanu, “Understanding Discrete Facial Expressions in Video Using an Emotion Avatar Image,” IEEE Trans. SMC-B, vol.42, no.4, pp.980-992, 2012.
    [38] Y. Li, S. Wang, Y. Zhao, and Q. Ji, “Simultaneous Facial Feature Tracking and Facial Expression Recognition,” IEEE Trans. Image Processing, vol.22, no.7, pp. 2559-2573, 2013.
    [39] M. W. Huang, Z. W. Wang, and Z. L. Ying , “A new method for facial expression recognition based on sparse representation plus LBP,” International Congress on Image and Signal Processing, pp.1750-1754, 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE