研究生: |
鄭宇倫 Cheng, Yu-Lun |
---|---|
論文名稱: |
利用由氯化鋁與矽酸根溶液塗佈與臭氧氧化形成氧化鋁鈍化層與局部接觸結構之單晶矽太陽能電池之研究 Using AlCl₃/SiO₃²⁻ Solution and Ozone Oxidation to Form Aluminum Oxide Passivation Layer on Rear Side of Monocrystalline Silicon Solar Cell |
指導教授: |
王立康
Wang, Li-Karn |
口試委員: |
陳昇暉
Chen, Sheng-Hui 甘炯耀 Gan, Jon-Yiew |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 氯化鋁 、矽酸根 、太陽能電池 、臭氧 |
外文關鍵詞: | AlCl₃, SiO₃²⁻, solar cell, O₃ |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗室致力於改善太陽能電池的鈍化層,近年來太陽能電池又隨著種種議題回到眾人的討論,而在這之中,如何以最低成本製作高效的太陽能電池是一件非常值得探討的議題,而本實驗為製作PERC太陽能電池。我們會以溶液塗佈與臭氧的方式形成鈍化層。使用濕式製程製作來降低成本,並利用臭氧氧化能力極強的特性形成較為緻密的鈍化層。
首先,我們使用P型矽基板來製作。我們將會探討氯化鋁與矽酸根溶液塗佈在基板背面形成三氧化二鋁作為鈍化層,在塗佈溶液後,我們會使用臭氧氧化,此後進行退火。我們會找出此溶液最佳的濃度、退火溫度與退火時間。在後續進行完退火後,為了觀察氧化鋁薄膜的特性,使用EDS、TEM量測來看成分的組成以及結構。我們使用最佳的參數為,氯化鋁比水的體積百分濃度100ml:0.5ml,矽酸根的體積百分濃度100ml:1ml,並將0.5ml的矽酸根加入50ml的氯化鋁溶液中,氧化時間20分鐘,退火時間15分鐘,退火溫度為500℃。得出的PERC太陽能電池,其最佳填充因子為75.6%、轉換效率為16.917%,比全面鋁的太陽能電池相比提升了0.522%。
Our lab is dedicated to finding a cost-effective way of depositing passivation layers for crystalline silicon solar cells. In recent years, solar cell have returned to human’s attention with various issues to be discussed. However, the issue of how to fabricate low cost and high-efficiency solar cells is always an important one. In this experiment, we develop a new passivation layer formula that is used for passivating the back surfaces of PERC solar cells. Our passivation layer is formed by using a wet chemical process and ozone oxidation. In this wet chemical process with post ozone oxidation, an AlOx layer is believed to be formed on the back surfaces of solar cells and good passivation effect is achieved.
In this study, p-type single crystalline silicon wafers were used. We discussed about the deposition process of forming Al2O3 films on rear sides of the wafers as passivation layers by using AlCl3/SiO32- solution. After coating the chemical solution, we then used ozone oxidation followed by an annealing process. The best concentration of the chemical solution,annealing temperature and annealing time period were discussed in this study. Measurements with EDS and TEM facilities were used to observe the elemental composition and the film structure. The best process parameters were found as follows. The volume percentage concentration of AlCl3 and water was 100ml:0.5ml; the volume percentage concentration of silicate solution was 100ml:1ml. 0.5ml of the prepared silicate solution is added into 50ml of the prepared AlCl3 solution. After coating the AlCl3/SiO32- solution, we performed 20-minute ozone oxidation, followed by 15-minute annealing at 500℃. The best PERC solar cell fabricated with this type of passivation layer had a fill factor of 75.6% and a conversion efficiency of 16.917%, the latter of which is 0.522% absolute higher than the best Al-BSF solar cell fabricated in the study.
[1]S. Mack, “Silicon surface passivation by thin thermal oxide/PECVD layer stack systems”, IEEE Journal of Photovoltaics, vol. 1, no. 2, pp. 135-145, 2011.
[2]F. Bellenger, “Passivation of Ge ( 100 ) ∕ GeO2 ∕ high-κ gate stacks using thermal oxide treatments”, Journal of the Electrochemical Society , vol. 155, no. 2, pp.33~38, 2008.
[3]P. Saint-Cast, “High-efficiency c-Si solar cells passivated with ALD and PECVD aluminum oxide”, IEEE Electron Device Letters, vol. 31, no. 7, pp. 695-697, 2010.
[4]S. Zhao, Q. Qiao, S. Zhang, J. Ji, Z. Shi, and G. Li, “Rear passivation of commercial multi-crystalline PERC solar cell by PECVD Al2O3”, Applied Surface Science, vol. 290, no. 0169-4332, pp. 66-70,2014.
[5]M. Y. Seo, E. N. Cho, C. E. Kim, P. Moon, and I. Yun, “Characterization of Al2O3 films grown by electron beam evaporator on Si substrates”, 2010 3rd International Nanoelectronics Conference (INEC), pp. 238-239, 2010.
[6]P. K. Liu, Y. L. Cheng, and L. K. Wang, “Crystalline silicon PERC solar cell with ozonized AlOx passivation layer on the rear side”, International Journal of Photoenergy, vol. 2020, article 6686797, 6 pages, 2020.
[7]B. Veith, T. Dullweber, M. Siebert, C. Kranz, F. Werner, N. P. Harder, J. Schmidt, B. F. P. Roos, T. Dippell, and R. Brendel, “Comparison of ICP-AlOx and ALD-Al2O3 layers for the rear surface passivation of c-Si solar cells”, Energy Procedia, vol. 27, no. 1876-6102, pp. 379-384, 2012.
[8]K. Ogutman, N. Iqbal, G. Gregory, M. Li, M. Haslinger, E. Cornagliotti, W. V. Schoenfeld, J. John, and K. O. Davis, “Spatial atomic layer deposition of aluminum oxide as a passivating hole contact for silicon solar cells”, Physica Status Solidi A, vol. 217, no. 18, 2020.
[9]D. M. Chapin , C. S. Fller, and G. L. Pearson, “A new silicon P-N junction photocell for converting solar radiation into electrical power”, Journal of Applied Physics, vol. 25, pp.676-677, 1954.
[10]PGE太平洋綠能, “ 2021太陽能趨勢”, Retrieved from https://blog.pgesolar.com.tw/2021/02/08/%E5%A4%AA%E9%99%BD%E8%83%BD%E8%B6%A8%E5%8B%A2
[11]OFweek太陽能光伏網, “主流太陽能電池優劣分析”, Retrieved from https://solar.ofweek.com/2021-01/ART-260006-8140-30481586.html
[12]NERL Transforming Energy, “Best Research-Cell Efficiency Chart”, Retrieved from https://www.nrel.gov/pv/cell-efficiency.html
[13]Solar Frontier, “Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency of 23.35%”, Retrieved from
https://www.solar-frontier.com/eng/news/2019/0117_press
[14]J. F. Geisz, R. M. France, and K. L. Schulte, “Six-junction III-V solar cells with 47.1% conversion efficiency under 143 suns concentration”, Nature Energy, vol. 5,no. 4, pp. 326-335, 2020.
[15]S. Schäfer and R. Brendel, “Accurate calculation of the absorptance enhances efficiency limit of crystalline silicon solar cells with lambertian light trapping”, IEEE Journal of Photovoltaics, vol. 8, no. 4, pp.1156-1158, 2018.
[16]P. Vitanov, E. Goranova, V. Stavrov, P. Ivanov, and P.K. Singh, “Fabrication of buried contact silicon solar cells using porous silicon”, Solar Energy Materials and Solar Cells, vol. 93, no. 3, pp.297-300, 2009.
[17]J. Benick, “High efficiency n-type PERT and PERL solar cells”, IEEE 40th Photovoltaic Specialist Conference (PVSC), pp. 3637-3640, 2014.
[18]T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells”, Solar Energy Materials and Solar Cells, vol. 95, no. 1, pp. 18-21, 2011.
[19]S. Kluska, F. Granek, M. Rüdiger, M. Hermle, and S. W. Glunz, “Modeling and optimization study of industrial n-type high-efficiency back contact back-junction silicon solar cells”, Solar Energy Materials and Solar Cells, vol. 94, no. 3, pp. 568-577, 2010.
[20]J. Zhao, A. Wang, M. A. Green, “High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates”, Solar Energy Materials and Solar Cells, vol. 65, no. 1-4, pp.429 - 435, 2001.
[21]H. Hannebauer, T. Dullweber, U. Baumann, T. Falcon, and R. Brendel, “21.2%-efficient fineline-printed PERC solar cell with 5 busbar front grid”, Physica Status Solidi RRL, vol. 8, no. 8, pp.675–679, 2014.
[22]P. Saint-Cast, “High-efficiency c-Si solar cells passivated with ALD and PECVD aluminum oxide”, IEEE Electron Device Letters , vol. 31, no. 7, pp.695-697, 2010.
[23]J. A. Töfflinger, A. Laades, and C. Leendertz, “PECVD-AlOx/SiNx passivation stacks on silicon: effective charge dynamics and interface defect state spectroscopy”, Energy Procedia, vol. 55, no. 1876-6102, pp. 845–854, 2014.
[24]M. Bhaisare, A. Misra, and A. Kottantharayil, “Aluminum oxide deposited by pulsed-DC reactive sputtering for crystalline silicon surface passivation”, IEEE Journal of Photovoltaics, vol. 3, no. 3, pp930~935, 2013.
[25]M. Farahmandjou and N. Golabiyan, “ New pore structure of nano-alumina (Al2O3) prepared by sol gel method”, Journal of Ceramic Processing Research, vol. 16, no. 2, pp. 1~4, 2015.
[26]T. Tsujide, S. Nakanuma, Y. Ikushima, “Properties of aluminum oxide obtain by hydrolysis of AlCl_3”, Journal of the Electrochemical Society, vol. 117, no. 5, pp.703-708, 1970.
[27]蕭丞澤,「背面利用由氯化鋁溶液形成氧化鋁鈍化層與局部接觸結構矽晶太陽能電池之研究」,國立清華大學光電工程研究所碩士班碩士論文,民國一百零九年六月。
[28]K. A. Salman, “Effect of surface texturing processes on the performance of crystalline silicon solar cell”, Solar Energy, vol. 147, pp.228-231, 2017.
[29]J. Chen, Z. H. J. Tey, Z. R. Du, F. Lin, B. Hoex, and A. G. Aberle, “Investigation of screen printed rear contacts for aluminum local back surface field silicon wafer solar cells”, IEEE Journal of Photovoltaics , vol. 3, no. 2, pp. 690-696, 2013.
[30]NTHU Y.-C. Hung Lab, “UV/VIS光譜儀 Lambda 35”, Retrieved from http://oplab.ipt.nthu.edu.tw/main/node/32
[31]Forter Tech, “Oriel Sol3A Class AAA Solar Simulators”, Retrieved from http://www.forter.com.tw/products_detail.asp?seq=2289