簡易檢索 / 詳目顯示

研究生: 陳冠維
Chen, Kuan-Wei
論文名稱: SH2B1 藉由影響染色質狀態及MyoD-DNA 結合能力來促進肌肉基因的表現
SH2B1 modulates chromatin state and MyoD occupancy to enhance expressions of myogenic genes
指導教授: 陳令儀
Chen, Linyi
口試委員: 林玉俊
Lin, Yu-Chun
高承福
Kao, Cheng-Fu
陳盛良
Chen, Shen-Liang
鄭世進
Cheng, Shih-Chin
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 201
中文關鍵詞: 染色質分化組蛋白修飾肌肉生成轉錄調控
外文關鍵詞: Chromatin, Differentiation, Histone modifications, Myogenesis, Transcriptional regulation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌肉生成對於胚胎發育及肌肉再生是必要的。當中胚層的細胞決定走向肌肉生成時,一連串的訊息蛋白包括類胰島素生長因子將啟動許多的訊號傳遞路徑,最後調控染色質的重組及肌肉基因的轉錄。然而在這過程中,染色質的重組,轉錄因子與DNA的結合,連接組蛋白(linker histone)及組蛋白(histone)之修飾的交互作用並不清楚。因此,我們證明一個在肌肉生成中可以調控泛染色質聚集和肌肉管生成的新蛋白−SH2B1。SH2B1和連接組蛋白H1形成複合體並可以幫助組蛋白H1從轉錄起始點(transcription start site)離開,進一步促進肌肉基因Igf2和Myog的表現。這暗示SH2B1是一個有潛力的連接組蛋白H1的伴護蛋白(histone H1 chaperone)。再者,SH2B1對於在Igf2及Myog附近的啟動子(promoter)和增強子(enhancer)上的轉錄因子MyoD-DNA之結合,MyoD活性及組蛋白H3第四離胺酸三個甲基化(H3K4me3)的上升和第九離胺酸三個甲基化(H3K9me3)的下降都是必要的。總結以上的實驗可以指出SH2B1是一個具有潛力的連接組蛋白H1之伴護蛋白,可以精確調控染色質的狀態及肌肉基因的表現,最後促進肌肉生成。肌肉細胞之間的融合是形成肌肉組織的一個關鍵步驟。我們在肌肉分化早期發現肌肉細胞(C2C12 cells)的細胞膜有泡狀結構。這泡狀結構僅出現在分化的肌肉細胞而與細胞凋亡無關。這樣的結果暗示泡狀結構出現在肌肉細胞融合之前。除此之外,對於細胞融合關鍵的蛋白質−肌動蛋白(actin),肌球蛋白重鏈(myosin heavy chain),肌肉黏著分子(M-cadherin)及β-catenin−也出現在泡狀結構裡面。這些實驗暗示著泡狀結構與肌肉細胞融合是有關的。在這篇論文中,我們展示在肌肉生成時,SH2B1可以透過表關遺傳學的方式影響肌肉基因的表現以及一個在肌肉細胞融合前的特殊細胞形態。


    Myogenesis is essential during embryogenesis as well as muscle regeneration. As mesoderm-derived cell lineage commits to myogenesis, a spectrum of signaling molecules, including insulin-like growth factor (IGF), activate signaling pathways and ultimately instruct chromatin remodeling and the transcription of myogenic genes. Nonetheless, the interplay among chromatin remodeling, transcription factor binding, linker histone and histone modifications during myogenesis remains to be clarified. To this end, we have identified and characterized a novel myogenic regulator, SH2B1, which is required for global chromatin condensation during myogenesis and the formation of myotubes. SH2B1 interacts with histone H1 and is required for the removal of histone H1 from active transcription sites, allowing for the expressions of myogenic genes, Igf2 and Myog, indicating SH2B1 is a potential histone H1 chaperone. Furthermore, SH2B1 is required for the transcriptional activity of MyoD and MyoD occupancy, the induction of histone H3 lysine 4 trimethylation as well as the reduction of histone H3 lysine 9 trimethylation at the enhancer/promoter regions of Igf2 and Myog during myogenesis. Together, these findings demonstrate that SH2B1, as a putative histone H1 chaperone, fine-tunes global-local chromatin states, expressions of myogenic genes and ultimately promotes myogenesis.
    Fusion between myoblasts is a key step for forming muscle tissue. During early stage of myogenesis, bubble-like structures protruding from plasma membrane are observed. These bubble-like structures are formed only on differentiating C2C12 cells and not correlated with apoptosis. Our findings suggest that bubble-like structures appear before the fusion of the two myoblasts. Furthermore, actin, myosin heavy chain, M-cadherin as well as β-catenin that are crucial for fusion localize within the bubble-like structures. These data imply that the formation of bubble-like structures may be required for the fusion. Taken together, this thesis demonstrates an epigenetic role of SH2B1 on myogenic genes and describes a differentiation specific morphological change before fusion of myoblasts.

    Table of the content I Abstract V 中文摘要 VII Acknowledgements VIII Publication List X Introduction 1 Myogenesis 1 Signal pathways initiate by insulin like growth factors 1 and 2 (IGF1 and 2) during myogenesis 2 Epigenetic regulation of Myog gene 5 Histone Chaperone 7 SH2B adaptor protein 1 (SH2B1) 10 Rhabdomyosarcoma (RMS) 11 Myoblast fusion 12 Adhesion molecules and actin cytoskeletons 12 Lipids at plasma membrane 14 Materials and Methods 17 Reagents 17 Plasmids 18 Cell culture 18 Isolation and culture of primary myoblasts 19 Knockdown of endogenous SH2B1 and SET via RNA interference 19 Immunoblotting and immunoprecipitation 20 Fractionation 21 Immunofluorescence staining, timelapse imaging and fusion index 21 Proteomic analysis using liquid chromatograph-tandem mass spectrometry 22 Semi-quantitative real-time polymerase chain reaction (qPCR) 22 Luciferase assays 23 Chromatin immunoprecipitation (ChIP) assays 23 Restriction endonuclease digestion 24 Micrococcal nuclease (MNase) digestion assays 25 Duolink in situ proximity ligation assay (PLA) 25 Glutathione S-transferase (GST) pull down assay 26 Statistical analysis 26 Results 27 Differential expression of SH2B family members during myogenesis 27 SH2B1 is required for myotube formation 27 SH2B1 is required for chromatin re-organization and condensation during myogenesis 29 SH2B1 is required for the expression of Igf2, transcriptional activity of MyoD and histone modifications of Igf2 31 SH2B1 regulates Myog expression through histone modifications and MyoD occupancy 35 Morphological changes before myoblasts fusion 39 Actin and MyHC are localized in the bubble-like structures during myogenesis 40 Farnesylated-GFP marks the bubble-like structure 41 M-cadherin and β-catenin are localized on the bubble-like structures 41 Differentiating myoblasts with bubble-like structures are not apoptotic cells 42 Discussion 43 Figures 51 Figure 1. The mRNA expression of SH2B family members during myogenesis. 51 Figure 2. The protein level of SH2B1 during myogenesis. 52 Figure 3. Establishment of C2C12 cells stably knocking down SH2B1. 53 Figure 4. SH2B1 is required for myotube formation. 54 Figure 5. Knockdown of SH2B1 reduces the length of myotube and the expression of MyHC in primary myoblast. 55 Figure 6. Overexpressing SH2B1 increases the level of Myogenin during myogenesis. 56 Figure 7. Overexpression of SH2B1 promotes myotube formation. 57 Figure 8. Overexpressing SH2B1 elevates the length of myotube and the expression of MyHC in primary myoblast. 58 Figure 9. Overexpressing SH2B1 in C2C12-shSH2B1 cells rescues myogenesis. 59 Figure 10. SH2B1 does not affect proliferation and cell cycle exist. 60 Figure 11. SH2B1 is required for chromatin re-organization during myogenesis. 61 Figure 12. Potential SH2B1 interacting proteins. 62 Figure 13. SH2B1 interacts with histone H1 in vitro. 63 Figure 14. SH2B1 interacts with histone H1 in vivo. 65 Figure 15. SH2B1 promotes chromatin condensation during myogenesis. 66 Figure 16. SET is required for myogenesis. 67 Figure 17. SH2B1 is required for the expression of Igf2. 68 Figure 18. SH2B1 did not affect the expression of IGF1R. 69 Figure 19. SH2B1 interacts with IGF1R. 70 Figure 20. Knocking down SH2B1 decreases the accessibility of chromatin at Igf2 enhancer during myogenesis. 71 Figure 21. SH2B1 is required for the removal of histone H1 at the promoter of Igf2. 72 Figure 22. SH2B1 modulates histone modifications at Igf2 promoter and enhancer during myogenesis. 73 Figure 23. Knockdown of SH2B1 decreases the level of pAKT but not pERK1/2. 74 Figure 24. SH2B1 regulates MyoD transcriptional activity and MyoD occupancy at Igf2 enhancer region. 75 Figure 25. SH2B1 promotes the nuclear export of FOXO3a. 77 Figure 26. SH2B1 is required for the expression of Myogenin but not MyoD. 78 Figure 27. Knocking down SH2B1 decreases the accessibility of chromatin at Myog promoter during myogenesis. 79 Figure 28. SH2B1 is required for the removal of histone H1 at the promoter of Myog. 80 Figure 29. SH2B1 modulates histone modifications at Myog promoter region during myogenesis. 81 Figure 30. SH2B1 regulates Myog promoter activity and MyoD occupancy at Myog promoter and enhancer regions. 82 Figure 31. SH2B1 regulates epigenetic modifiers during myogenesis. 84 Figure 32. The occupancy of MyoD increases at the 5’ region of Sh2b1 during myogenesis. 85 Figure 33. SH2B1 enhances differentiation of RD cells. 86 Figure 34. Membrane protrusions were observed during myogenesis. 87 Figure 35. Bubble-like structures only form during myogenesis. 89 Figure 36. Farnesylated-GFP marks the bubble-like structure. 90 Figure 37. M-cadherin and β-catenin are localized at bubble-like structre. 91 Figure 38. C2C12 cells with blebs are not apoptotic cells. 92 Figure 39. MyoD occupancy at mouse Myog gene during myogenesis. 93 Figure 40. Schematic model of how SH2B1 regulates myogenesis. 94 Tables 96 Table 1. List of antibodies dilution and their applications 96 Table 2. List of primers for gene expression, ChIP and restriction endonuclease digestion 97 Table 3. SH2B1 binding partners during myogenesis 100 Reference 105

    1. Mal, A., Sturniolo, M., Schiltz, R. L., Ghosh, M. K., and Harter, M. L. (2001) A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. The EMBO journal 20, 1739-1753
    2. Neuhold, L. A., and Wold, B. (1993) HLH forced dimers: tethering MyoD to E47 generates a dominant positive myogenic factor insulated from negative regulation by Id. Cell 74, 1033-1042
    3. Spicer, D. B., Rhee, J., Cheung, W. L., and Lassar, A. B. (1996) Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist. Science 272, 1476-1480
    4. Wei, Q., and Paterson, B. M. (2001) Regulation of MyoD function in the dividing myoblast. FEBS letters 490, 171-178
    5. Halevy, O., Novitch, B. G., Spicer, D. B., Skapek, S. X., Rhee, J., Hannon, G. J., Beach, D., and Lassar, A. B. (1995) Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267, 1018-1021
    6. Martelli, F., Cenciarelli, C., Santarelli, G., Polikar, B., Felsani, A., and Caruso, M. (1994) MyoD induces retinoblastoma gene expression during myogenic differentiation. Oncogene 9, 3579-3590
    7. Guo, C. S., Degnin, C., Fiddler, T. A., Stauffer, D., and Thayer, M. J. (2003) Regulation of MyoD activity and muscle cell differentiation by MDM2, pRb, and Sp1. The Journal of biological chemistry 278, 22615-22622
    8. Molkentin, J. D., Black, B. L., Martin, J. F., and Olson, E. N. (1995) Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83, 1125-1136
    9. Weintraub, H., Davis, R., Lockshon, D., and Lassar, A. (1990) MyoD binds cooperatively to two sites in a target enhancer sequence: occupancy of two sites is required for activation. Proceedings of the National Academy of Sciences of the United States of America 87, 5623-5627
    10. Hsiao, S. P., and Chen, S. L. (2010) Myogenic regulatory factors regulate M-cadherin expression by targeting its proximal promoter elements. The Biochemical journal 428, 223-233
    11. Thompson, W. R., Nadal-Ginard, B., and Mahdavi, V. (1991) A MyoD1-independent muscle-specific enhancer controls the expression of the beta-myosin heavy chain gene in skeletal and cardiac muscle cells. The Journal of biological chemistry 266, 22678-22688
    12. Edmondson, D. G., Cheng, T. C., Cserjesi, P., Chakraborty, T., and Olson, E. N. (1992) Analysis of the myogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2. Molecular and cellular biology 12, 3665-3677
    13. Powell-Braxton, L., Hollingshead, P., Warburton, C., Dowd, M., Pitts-Meek, S., Dalton, D., Gillett, N., and Stewart, T. A. (1993) IGF-I is required for normal embryonic growth in mice. Genes & development 7, 2609-2617
    14. Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J., and Efstratiadis, A. (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59-72
    15. Baker, J., Liu, J. P., Robertson, E. J., and Efstratiadis, A. (1993) Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73-82
    16. Wylie, A. A., Pulford, D. J., McVie-Wylie, A. J., Waterland, R. A., Evans, H. K., Chen, Y. T., Nolan, C. M., Orton, T. C., and Jirtle, R. L. (2003) Tissue-specific inactivation of murine M6P/IGF2R. The American journal of pathology 162, 321-328
    17. Kaliman, P., Vinals, F., Testar, X., Palacin, M., and Zorzano, A. (1996) Phosphatidylinositol 3-kinase inhibitors block differentiation of skeletal muscle cells. The Journal of biological chemistry 271, 19146-19151
    18. Serra, C., Palacios, D., Mozzetta, C., Forcales, S. V., Morantte, I., Ripani, M., Jones, D. R., Du, K., Jhala, U. S., Simone, C., and Puri, P. L. (2007) Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation. Molecular cell 28, 200-213
    19. Braun, T., and Gautel, M. (2011) Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nature reviews. Molecular cell biology 12, 349-361
    20. Zhao, J., Brault, J. J., Schild, A., Cao, P., Sandri, M., Schiaffino, S., Lecker, S. H., and Goldberg, A. L. (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell metabolism 6, 472-483
    21. Clavel, S., Siffroi-Fernandez, S., Coldefy, A. S., Boulukos, K., Pisani, D. F., and Derijard, B. (2010) Regulation of the intracellular localization of Foxo3a by stress-activated protein kinase signaling pathways in skeletal muscle cells. Molecular and cellular biology 30, 470-480
    22. Hu, P., Geles, K. G., Paik, J. H., DePinho, R. A., and Tjian, R. (2008) Codependent activators direct myoblast-specific MyoD transcription. Developmental cell 15, 534-546
    23. Hribal, M. L., Nakae, J., Kitamura, T., Shutter, J. R., and Accili, D. (2003) Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. The Journal of cell biology 162, 535-541
    24. Wu, Y. J., Fang, Y. H., Chi, H. C., Chang, L. C., Chung, S. Y., Huang, W. C., Wang, X. W., Lee, K. W., and Chen, S. L. (2014) Insulin and LiCl synergistically rescue myogenic differentiation of FoxO1 over-expressed myoblasts. PloS one 9, e88450
    25. Wilson, E. M., Hsieh, M. M., and Rotwein, P. (2003) Autocrine growth factor signaling by insulin-like growth factor-II mediates MyoD-stimulated myocyte maturation. The Journal of biological chemistry 278, 41109-41113
    26. Mal, A., and Harter, M. L. (2003) MyoD is functionally linked to the silencing of a muscle-specific regulatory gene prior to skeletal myogenesis. Proceedings of the National Academy of Sciences of the United States of America 100, 1735-1739
    27. Seenundun, S., Rampalli, S., Liu, Q. C., Aziz, A., Palii, C., Hong, S., Blais, A., Brand, M., Ge, K., and Dilworth, F. J. (2010) UTX mediates demethylation of H3K27me3 at muscle-specific genes during myogenesis. The EMBO journal 29, 1401-1411
    28. Wang, A. H., Zare, H., Mousavi, K., Wang, C., Moravec, C. E., Sirotkin, H. I., Ge, K., Gutierrez-Cruz, G., and Sartorelli, V. (2013) The histone chaperone Spt6 coordinates histone H3K27 demethylation and myogenesis. The EMBO journal 32, 1075-1086
    29. Asp, P., Blum, R., Vethantham, V., Parisi, F., Micsinai, M., Cheng, J., Bowman, C., Kluger, Y., and Dynlacht, B. D. (2011) Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proceedings of the National Academy of Sciences of the United States of America 108, E149-158
    30. Cao, Y., Yao, Z., Sarkar, D., Lawrence, M., Sanchez, G. J., Parker, M. H., MacQuarrie, K. L., Davison, J., Morgan, M. T., Ruzzo, W. L., Gentleman, R. C., and Tapscott, S. J. (2010) Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Developmental cell 18, 662-674
    31. Blum, R., Vethantham, V., Bowman, C., Rudnicki, M., and Dynlacht, B. D. (2012) Genome-wide identification of enhancers in skeletal muscle: the role of MyoD1. Genes & development 26, 2763-2779
    32. Ling, B. M., Bharathy, N., Chung, T. K., Kok, W. K., Li, S., Tan, Y. H., Rao, V. K., Gopinadhan, S., Sartorelli, V., Walsh, M. J., and Taneja, R. (2012) Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation. Proceedings of the National Academy of Sciences of the United States of America 109, 841-846
    33. Tao, Y., Neppl, R. L., Huang, Z. P., Chen, J., Tang, R. H., Cao, R., Zhang, Y., Jin, S. W., and Wang, D. Z. (2011) The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly. The Journal of cell biology 194, 551-565
    34. Puri, P. L., Sartorelli, V., Yang, X. J., Hamamori, Y., Ogryzko, V. V., Howard, B. H., Kedes, L., Wang, J. Y., Graessmann, A., Nakatani, Y., and Levrero, M. (1997) Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Molecular cell 1, 35-45
    35. Sartorelli, V., Puri, P. L., Hamamori, Y., Ogryzko, V., Chung, G., Nakatani, Y., Wang, J. Y., and Kedes, L. (1999) Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Molecular cell 4, 725-734
    36. Dilworth, F. J., Seaver, K. J., Fishburn, A. L., Htet, S. L., and Tapscott, S. J. (2004) In vitro transcription system delineates the distinct roles of the coactivators pCAF and p300 during MyoD/E47-dependent transactivation. Proceedings of the National Academy of Sciences of the United States of America 101, 11593-11598
    37. Oikawa, Y., Omori, R., Nishii, T., Ishida, Y., Kawaichi, M., and Matsuda, E. (2011) The methyl-CpG-binding protein CIBZ suppresses myogenic differentiation by directly inhibiting myogenin expression. Cell research 21, 1578-1590
    38. Yang, J. H., Choi, J. H., Jang, H., Park, J. Y., Han, J. W., Youn, H. D., and Cho, E. J. (2011) Histone chaperones cooperate to mediate Mef2-targeted transcriptional regulation during skeletal myogenesis. Biochemical and biophysical research communications 407, 541-547
    39. Yang, J. H., Song, Y., Seol, J. H., Park, J. Y., Yang, Y. J., Han, J. W., Youn, H. D., and Cho, E. J. (2011) Myogenic transcriptional activation of MyoD mediated by replication-independent histone deposition. Proceedings of the National Academy of Sciences of the United States of America 108, 85-90
    40. Lolis, A. A., Londhe, P., Beggs, B. C., Byrum, S. D., Tackett, A. J., and Davie, J. K. (2013) Myogenin recruits the histone chaperone facilitates chromatin transcription (FACT) to promote nucleosome disassembly at muscle-specific genes. The Journal of biological chemistry 288, 7676-7687
    41. Kadota, S., and Nagata, K. (2014) Silencing of IFN-stimulated gene transcription is regulated by histone H1 and its chaperone TAF-I. Nucleic acids research 42, 7642-7653
    42. Richardson, R. T., Batova, I. N., Widgren, E. E., Zheng, L. X., Whitfield, M., Marzluff, W. F., and O'Rand, M. G. (2000) Characterization of the histone H1-binding protein, NASP, as a cell cycle-regulated somatic protein. The Journal of biological chemistry 275, 30378-30386
    43. Shintomi, K., Iwabuchi, M., Saeki, H., Ura, K., Kishimoto, T., and Ohsumi, K. (2005) Nucleosome assembly protein-1 is a linker histone chaperone in Xenopus eggs. Proceedings of the National Academy of Sciences of the United States of America 102, 8210-8215
    44. Yousaf, N., Deng, Y., Kang, Y., and Riedel, H. (2001) Four PSM/SH2-B alternative splice variants and their differential roles in mitogenesis. The Journal of biological chemistry 276, 40940-40948
    45. Zhang, M., Deng, Y., and Riedel, H. (2008) PSM/SH2B1 splice variants: critical role in src catalytic activation and the resulting STAT3s-mediated mitogenic response. Journal of cellular biochemistry 104, 105-118
    46. Pearce, L. R., Joe, R., Doche, M. E., Su, H. W., Keogh, J. M., Henning, E., Argetsinger, L. S., Bochukova, E. G., Cline, J. M., Garg, S., Saeed, S., Shoelson, S., O'Rahilly, S., Barroso, I., Rui, L., Farooqi, I. S., and Carter-Su, C. (2014) Functional characterization of obesity-associated variants involving the alpha and beta isoforms of human SH2B1. Endocrinology 155, 3219-3226
    47. Chen, K. W., Chang, Y. J., and Chen, L. (2015) SH2B1 orchestrates signaling events to filopodium formation during neurite outgrowth. Communicative & integrative biology 8, e1044189
    48. Rui, L. (2014) SH2B1 regulation of energy balance, body weight, and glucose metabolism. World journal of diabetes 5, 511-526
    49. Wu, G., Liu, Y., Huang, H., Tang, Y., Liu, W., Mei, Y., Wan, N., Liu, X., and Huang, C. (2015) SH2B1 is critical for the regulation of cardiac remodelling in response to pressure overload. Cardiovascular research 107, 203-215
    50. Lin, W. F., Chen, C. J., Chang, Y. J., Chen, S. L., Chiu, I. M., and Chen, L. (2009) SH2B1beta enhances fibroblast growth factor 1 (FGF1)-induced neurite outgrowth through MEK-ERK1/2-STAT3-Egr1 pathway. Cellular signalling 21, 1060-1072
    51. Shih, C. H., Chen, C. J., and Chen, L. (2013) New function of the adaptor protein SH2B1 in brain-derived neurotrophic factor-induced neurite outgrowth. PloS one 8, e79619
    52. Chen, Z., Morris, D. L., Jiang, L., Liu, Y., and Rui, L. (2014) SH2B1 in beta-cells promotes insulin expression and glucose metabolism in mice. Molecular endocrinology 28, 696-705
    53. Zhang, H., Duan, C. J., Chen, W., Wang, S. Q., Zhang, S. K., Dong, S., Cheng, Y. D., and Zhang, C. F. (2012) Clinical significance of SH2B1 adaptor protein expression in non-small cell lung cancer. Asian Pacific journal of cancer prevention : APJCP 13, 2355-2362
    54. Doche, M. E., Bochukova, E. G., Su, H. W., Pearce, L. R., Keogh, J. M., Henning, E., Cline, J. M., Saeed, S., Dale, A., Cheetham, T., Barroso, I., Argetsinger, L. S., O'Rahilly, S., Rui, L., Carter-Su, C., and Farooqi, I. S. (2012) Human SH2B1 mutations are associated with maladaptive behaviors and obesity. The Journal of clinical investigation 122, 4732-4736
    55. Ren, D., Zhou, Y., Morris, D., Li, M., Li, Z., and Rui, L. (2007) Neuronal SH2B1 is essential for controlling energy and glucose homeostasis. The Journal of clinical investigation 117, 397-406
    56. Chen, L., Maures, T. J., Jin, H., Huo, J. S., Rabbani, S. A., Schwartz, J., and Carter-Su, C. (2008) SH2B1beta (SH2-Bbeta) enhances expression of a subset of nerve growth factor-regulated genes important for neuronal differentiation including genes encoding urokinase plasminogen activator receptor and matrix metalloproteinase 3/10. Molecular endocrinology 22, 454-476
    57. Maures, T. J., Chen, L., and Carter-Su, C. (2009) Nucleocytoplasmic shuttling of the adapter protein SH2B1beta (SH2-Bbeta) is required for nerve growth factor (NGF)-dependent neurite outgrowth and enhancement of expression of a subset of NGF-responsive genes. Molecular endocrinology 23, 1077-1091
    58. Chang, Y. J., Chen, K. W., Chen, C. J., Lin, M. H., Sun, Y. J., Lee, J. L., Chiu, I. M., and Chen, L. (2014) SH2B1beta interacts with STAT3 and enhances fibroblast growth factor 1-induced gene expression during neuronal differentiation. Molecular and cellular biology 34, 1003-1019
    59. Parham, D. M., and Barr, F. G. (2013) Classification of rhabdomyosarcoma and its molecular basis. Advances in anatomic pathology 20, 387-397
    60. Tapscott, S. J., Thayer, M. J., and Weintraub, H. (1993) Deficiency in rhabdomyosarcomas of a factor required for MyoD activity and myogenesis. Science 259, 1450-1453
    61. Kohsaka, S., Shukla, N., Ameur, N., Ito, T., Ng, C. K., Wang, L., Lim, D., Marchetti, A., Viale, A., Pirun, M., Socci, N. D., Qin, L. X., Sciot, R., Bridge, J., Singer, S., Meyers, P., Wexler, L. H., Barr, F. G., Dogan, S., Fletcher, J. A., Reis-Filho, J. S., and Ladanyi, M. (2014) A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K-AKT pathway mutations. Nature genetics 46, 595-600
    62. McAllister, R. M., Melnyk, J., Finkelstein, J. Z., Adams, E. C., Jr., and Gardner, M. B. (1969) Cultivation in vitro of cells derived from a human rhabdomyosarcoma. Cancer 24, 520-526
    63. MacQuarrie, K. L., Yao, Z., Fong, A. P., Diede, S. J., Rudzinski, E. R., Hawkins, D. S., and Tapscott, S. J. (2013) Comparison of genome-wide binding of MyoD in normal human myogenic cells and rhabdomyosarcomas identifies regional and local suppression of promyogenic transcription factors. Molecular and cellular biology 33, 773-784
    64. Macquarrie, K. L., Yao, Z., Young, J. M., Cao, Y., and Tapscott, S. J. (2012) miR-206 integrates multiple components of differentiation pathways to control the transition from growth to differentiation in rhabdomyosarcoma cells. Skeletal muscle 2, 7
    65. Ruiz-Gomez, M., Coutts, N., Price, A., Taylor, M. V., and Bate, M. (2000) Drosophila dumbfounded: a myoblast attractant essential for fusion. Cell 102, 189-198
    66. Strunkelnberg, M., Bonengel, B., Moda, L. M., Hertenstein, A., de Couet, H. G., Ramos, R. G., and Fischbach, K. F. (2001) rst and its paralogue kirre act redundantly during embryonic muscle development in Drosophila. Development 128, 4229-4239
    67. Bour, B. A., Chakravarti, M., West, J. M., and Abmayr, S. M. (2000) Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myoblast fusion. Genes & development 14, 1498-1511
    68. Charrasse, S., Comunale, F., Fortier, M., Portales-Casamar, E., Debant, A., and Gauthier-Rouviere, C. (2007) M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion. Molecular biology of the cell 18, 1734-1743
    69. Charrasse, S., Comunale, F., Grumbach, Y., Poulat, F., Blangy, A., and Gauthier-Rouviere, C. (2006) RhoA GTPase regulates M-cadherin activity and myoblast fusion. Molecular biology of the cell 17, 749-759
    70. Abmayr, S. M., Zhuang, S., and Geisbrecht, E. R. (2008) Myoblast fusion in Drosophila. Methods Mol Biol 475, 75-97
    71. Artero, R. D., Castanon, I., and Baylies, M. K. (2001) The immunoglobulin-like protein Hibris functions as a dose-dependent regulator of myoblast fusion and is differentially controlled by Ras and Notch signaling. Development 128, 4251-4264
    72. Shilagardi, K., Li, S., Luo, F., Marikar, F., Duan, R., Jin, P., Kim, J. H., Murnen, K., and Chen, E. H. (2013) Actin-propelled invasive membrane protrusions promote fusogenic protein engagement during cell-cell fusion. Science 340, 359-363
    73. Powell, G. T., and Wright, G. J. (2011) Jamb and jamc are essential for vertebrate myocyte fusion. PLoS biology 9, e1001216
    74. Massarwa, R., Carmon, S., Shilo, B. Z., and Schejter, E. D. (2007) WIP/WASp-based actin-polymerization machinery is essential for myoblast fusion in Drosophila. Developmental cell 12, 557-569
    75. Schafer, G., Weber, S., Holz, A., Bogdan, S., Schumacher, S., Muller, A., Renkawitz-Pohl, R., and Onel, S. F. (2007) The Wiskott-Aldrich syndrome protein (WASP) is essential for myoblast fusion in Drosophila. Developmental biology 304, 664-674
    76. Berger, S., Schafer, G., Kesper, D. A., Holz, A., Eriksson, T., Palmer, R. H., Beck, L., Klambt, C., Renkawitz-Pohl, R., and Onel, S. F. (2008) WASP and SCAR have distinct roles in activating the Arp2/3 complex during myoblast fusion. Journal of cell science 121, 1303-1313
    77. Kim, S., Shilagardi, K., Zhang, S., Hong, S. N., Sens, K. L., Bo, J., Gonzalez, G. A., and Chen, E. H. (2007) A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion. Developmental cell 12, 571-586
    78. Luo, L., Liao, Y. J., Jan, L. Y., and Jan, Y. N. (1994) Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes & development 8, 1787-1802
    79. Chen, E. H., Pryce, B. A., Tzeng, J. A., Gonzalez, G. A., and Olson, E. N. (2003) Control of myoblast fusion by a guanine nucleotide exchange factor, loner, and its effector ARF6. Cell 114, 751-762
    80. Sens, K. L., Zhang, S., Jin, P., Duan, R., Zhang, G., Luo, F., Parachini, L., and Chen, E. H. (2010) An invasive podosome-like structure promotes fusion pore formation during myoblast fusion. The Journal of cell biology 191, 1013-1027
    81. Dickson, G., Peck, D., Moore, S. E., Barton, C. H., and Walsh, F. S. (1990) Enhanced myogenesis in NCAM-transfected mouse myoblasts. Nature 344, 348-351
    82. Knudsen, K. A., McElwee, S. A., and Myers, L. (1990) A role for the neural cell adhesion molecule, NCAM, in myoblast interaction during myogenesis. Developmental biology 138, 159-168
    83. Drees, F., Pokutta, S., Yamada, S., Nelson, W. J., and Weis, W. I. (2005) Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123, 903-915
    84. Wrobel, E., Brzoska, E., and Moraczewski, J. (2007) M-cadherin and beta-catenin participate in differentiation of rat satellite cells. European journal of cell biology 86, 99-109
    85. Laurin, M., Fradet, N., Blangy, A., Hall, A., Vuori, K., and Cote, J. F. (2008) The atypical Rac activator Dock180 (Dock1) regulates myoblast fusion in vivo. Proceedings of the National Academy of Sciences of the United States of America 105, 15446-15451
    86. Dalkilic, I., Schienda, J., Thompson, T. G., and Kunkel, L. M. (2006) Loss of FilaminC (FLNc) results in severe defects in myogenesis and myotube structure. Molecular and cellular biology 26, 6522-6534
    87. Jansen, K. M., and Pavlath, G. K. (2006) Mannose receptor regulates myoblast motility and muscle growth. The Journal of cell biology 174, 403-413
    88. Millay, D. P., O'Rourke, J. R., Sutherland, L. B., Bezprozvannaya, S., Shelton, J. M., Bassel-Duby, R., and Olson, E. N. (2013) Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature 499, 301-305
    89. Tsujita, K., and Itoh, T. (2015) Phosphoinositides in the regulation of actin cortex and cell migration. Biochimica et biophysica acta 1851, 824-831
    90. Viaud, J., Mansour, R., Antkowiak, A., Mujalli, A., Valet, C., Chicanne, G., Xuereb, J. M., Terrisse, A. D., Severin, S., Gratacap, M. P., Gaits-Iacovoni, F., and Payrastre, B. (2016) Phosphoinositides: Important lipids in the coordination of cell dynamics. Biochimie 125, 250-258
    91. Krahn, M. P., and Wodarz, A. (2012) Phosphoinositide lipids and cell polarity: linking the plasma membrane to the cytocortex. Essays in biochemistry 53, 15-27
    92. Blondelle, J., Ohno, Y., Gache, V., Guyot, S., Storck, S., Blanchard-Gutton, N., Barthelemy, I., Walmsley, G., Rahier, A., Gadin, S., Maurer, M., Guillaud, L., Prola, A., Ferry, A., Aubin-Houzelstein, G., Demarquoy, J., Relaix, F., Piercy, R. J., Blot, S., Kihara, A., Tiret, L., and Pilot-Storck, F. (2015) HACD1, a regulator of membrane composition and fluidity, promotes myoblast fusion and skeletal muscle growth. Journal of molecular cell biology 7, 429-440
    93. Leikina, E., Melikov, K., Sanyal, S., Verma, S. K., Eun, B., Gebert, C., Pfeifer, K., Lizunov, V. A., Kozlov, M. M., and Chernomordik, L. V. (2013) Extracellular annexins and dynamin are important for sequential steps in myoblast fusion. The Journal of cell biology 200, 109-123
    94. Nakanishi, M., Hirayama, E., and Kim, J. (2001) Characterisation of myogenic cell membrane: II. Dynamic changes in membrane lipids during the differentiation of mouse C2 myoblast cells. Cell biology international 25, 971-979
    95. Hochreiter-Hufford, A. E., Lee, C. S., Kinchen, J. M., Sokolowski, J. D., Arandjelovic, S., Call, J. A., Klibanov, A. L., Yan, Z., Mandell, J. W., and Ravichandran, K. S. (2013) Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature 497, 263-267
    96. Park, S. Y., Yun, Y., Lim, J. S., Kim, M. J., Kim, S. Y., Kim, J. E., and Kim, I. S. (2016) Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration. Nature communications 7, 10871
    97. Hamoud, N., Tran, V., Croteau, L. P., Kania, A., and Cote, J. F. (2014) G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates. Proceedings of the National Academy of Sciences of the United States of America 111, 3745-3750
    98. van den Eijnde, S. M., van den Hoff, M. J., Reutelingsperger, C. P., van Heerde, W. L., Henfling, M. E., Vermeij-Keers, C., Schutte, B., Borgers, M., and Ramaekers, F. C. (2001) Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation. Journal of cell science 114, 3631-3642
    99. Jeong, J., and Conboy, I. M. (2011) Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes. Biochemical and biophysical research communications 414, 9-13
    100. Granata, F., Iorio, E., Carpinelli, G., Giannini, M., and Podo, F. (2000) Phosphocholine and phosphoethanolamine during chick embryo myogenesis: a (31)P-NMR study. Biochimica et biophysica acta 1483, 334-342
    101. Teng, S., Stegner, D., Chen, Q., Hongu, T., Hasegawa, H., Chen, L., Kanaho, Y., Nieswandt, B., Frohman, M. A., and Huang, P. (2015) Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration. Molecular biology of the cell 26, 506-517
    102. Bothe, I., Deng, S., and Baylies, M. (2014) PI(4,5)P2 regulates myoblast fusion through Arp2/3 regulator localization at the fusion site. Development 141, 2289-2301
    103. Mebarek, S., Komati, H., Naro, F., Zeiller, C., Alvisi, M., Lagarde, M., Prigent, A. F., and Nemoz, G. (2007) Inhibition of de novo ceramide synthesis upregulates phospholipase D and enhances myogenic differentiation. Journal of cell science 120, 407-416
    104. Kuwahara, K., Barrientos, T., Pipes, G. C., Li, S., and Olson, E. N. (2005) Muscle-specific signaling mechanism that links actin dynamics to serum response factor. Molecular and cellular biology 25, 3173-3181
    105. Mermelstein, C. S., Portilho, D. M., Medeiros, R. B., Matos, A. R., Einicker-Lamas, M., Tortelote, G. G., Vieyra, A., and Costa, M. L. (2005) Cholesterol depletion by methyl-beta-cyclodextrin enhances myoblast fusion and induces the formation of myotubes with disorganized nuclei. Cell and tissue research 319, 289-297
    106. Mukai, A., Kurisaki, T., Sato, S. B., Kobayashi, T., Kondoh, G., and Hashimoto, N. (2009) Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells. Experimental cell research 315, 3052-3063
    107. Rui, L., Herrington, J., and Carter-Su, C. (1999) SH2-B is required for nerve growth factor-induced neuronal differentiation. The Journal of biological chemistry 274, 10590-10594
    108. Bondesen, B. A., Mills, S. T., Kegley, K. M., and Pavlath, G. K. (2004) The COX-2 pathway is essential during early stages of skeletal muscle regeneration. American journal of physiology. Cell physiology 287, C475-483
    109. Lee, T. I., Johnstone, S. E., and Young, R. A. (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nature protocols 1, 729-748
    110. Alzhanov, D. T., McInerney, S. F., and Rotwein, P. (2010) Long range interactions regulate Igf2 gene transcription during skeletal muscle differentiation. The Journal of biological chemistry 285, 38969-38977
    111. Wang, T. C., Li, Y. H., Chen, K. W., Chen, C. J., Wu, C. L., Teng, N. Y., and Chen, L. (2011) SH2B1beta regulates N-cadherin levels, cell-cell adhesion and nerve growth factor-induced neurite initiation. Journal of cellular physiology 226, 2063-2074
    112. Yaffe, D., and Saxel, O. (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270, 725-727
    113. Dowling, J. J., Vreede, A. P., Kim, S., Golden, J., and Feldman, E. L. (2008) Kindlin-2 is required for myocyte elongation and is essential for myogenesis. BMC cell biology 9, 36
    114. Brero, A., Easwaran, H. P., Nowak, D., Grunewald, I., Cremer, T., Leonhardt, H., and Cardoso, M. C. (2005) Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation. The Journal of cell biology 169, 733-743
    115. Rider, L., Tao, J., Snyder, S., Brinley, B., Lu, J., and Diakonova, M. (2009) Adapter protein SH2B1beta cross-links actin filaments and regulates actin cytoskeleton. Molecular endocrinology 23, 1065-1076
    116. Rider, L., and Diakonova, M. (2011) Adapter protein SH2B1beta binds filamin A to regulate prolactin-dependent cytoskeletal reorganization and cell motility. Molecular endocrinology 25, 1231-1243
    117. Qian, X., and Ginty, D. D. (2001) SH2-B and APS are multimeric adapters that augment TrkA signaling. Molecular and cellular biology 21, 1613-1620
    118. Kato, K., Okuwaki, M., and Nagata, K. (2011) Role of Template Activating Factor-I as a chaperone in linker histone dynamics. Journal of cell science 124, 3254-3265
    119. Wang, J., and Riedel, H. (1998) Insulin-like growth factor-I receptor and insulin receptor association with a Src homology-2 domain-containing putative adapter. The Journal of biological chemistry 273, 3136-3139
    120. Duan, C., Li, M., and Rui, L. (2004) SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin. The Journal of biological chemistry 279, 43684-43691
    121. Rotwein, P., and Hall, L. J. (1990) Evolution of insulin-like growth factor II: characterization of the mouse IGF-II gene and identification of two pseudo-exons. DNA and cell biology 9, 725-735
    122. Yang, S. M., Kim, B. J., Norwood Toro, L., and Skoultchi, A. I. (2013) H1 linker histone promotes epigenetic silencing by regulating both DNA methylation and histone H3 methylation. Proceedings of the National Academy of Sciences of the United States of America 110, 1708-1713
    123. Cao, K., Lailler, N., Zhang, Y., Kumar, A., Uppal, K., Liu, Z., Lee, E. K., Wu, H., Medrzycki, M., Pan, C., Ho, P. Y., Cooper, G. P., Jr., Dong, X., Bock, C., Bouhassira, E. E., and Fan, Y. (2013) High-resolution mapping of h1 linker histone variants in embryonic stem cells. PLoS genetics 9, e1003417
    124. Izzo, A., Kamieniarz-Gdula, K., Ramirez, F., Noureen, N., Kind, J., Manke, T., van Steensel, B., and Schneider, R. (2013) The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells. Cell reports 3, 2142-2154
    125. Lu, W. C., Chen, C. J., Hsu, H. C., Hsu, H. L., and Chen, L. (2010) The adaptor protein SH2B1beta reduces hydrogen peroxide-induced cell death in PC12 cells and hippocampal neurons. Journal of molecular signaling 5, 17
    126. Whetstine, J. R., Nottke, A., Lan, F., Huarte, M., Smolikov, S., Chen, Z., Spooner, E., Li, E., Zhang, G., Colaiacovo, M., and Shi, Y. (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467-481
    127. Klose, R. J., Yamane, K., Bae, Y., Zhang, D., Erdjument-Bromage, H., Tempst, P., Wong, J., and Zhang, Y. (2006) The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442, 312-316
    128. Cloos, P. A., Christensen, J., Agger, K., Maiolica, A., Rappsilber, J., Antal, T., Hansen, K. H., and Helin, K. (2006) The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442, 307-311
    129. Bannister, A. J., Schneider, R., Myers, F. A., Thorne, A. W., Crane-Robinson, C., and Kouzarides, T. (2005) Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. The Journal of biological chemistry 280, 17732-17736
    130. Soleimani, V. D., Yin, H., Jahani-Asl, A., Ming, H., Kockx, C. E., van Ijcken, W. F., Grosveld, F., and Rudnicki, M. A. (2012) Snail regulates MyoD binding-site occupancy to direct enhancer switching and differentiation-specific transcription in myogenesis. Molecular cell 47, 457-468
    131. Charras, G., and Paluch, E. (2008) Blebs lead the way: how to migrate without lamellipodia. Nature reviews. Molecular cell biology 9, 730-736
    132. Cairns, B. R. (2009) The logic of chromatin architecture and remodelling at promoters. Nature 461, 193-198
    133. Juan, L. J., Utley, R. T., Vignali, M., Bohm, L., and Workman, J. L. (1997) H1-mediated repression of transcription factor binding to a stably positioned nucleosome. The Journal of biological chemistry 272, 3635-3640
    134. Nacheva, G. A., Guschin, D. Y., Preobrazhenskaya, O. V., Karpov, V. L., Ebralidse, K. K., and Mirzabekov, A. D. (1989) Change in the pattern of histone binding to DNA upon transcriptional activation. Cell 58, 27-36
    135. Flanagan, T. W., and Brown, D. T. (2016) Molecular dynamics of histone H1. Biochimica et biophysica acta 1859, 468-475
    136. Pan, C., and Fan, Y. (2016) Role of H1 linker histones in mammalian development and stem cell differentiation. Biochimica et biophysica acta 1859, 496-509
    137. Hammond, C. M., Stromme, C. B., Huang, H., Patel, D. J., and Groth, A. (2017) Histone chaperone networks shaping chromatin function. Nature reviews. Molecular cell biology 18, 141-158
    138. Campos, E. I., Fillingham, J., Li, G., Zheng, H., Voigt, P., Kuo, W. H., Seepany, H., Gao, Z., Day, L. A., Greenblatt, J. F., and Reinberg, D. (2010) The program for processing newly synthesized histones H3.1 and H4. Nature structural & molecular biology 17, 1343-1351
    139. O'Brien, S. K., Knight, K. L., and Rana, T. M. (2012) Phosphorylation of histone H1 by P-TEFb is a necessary step in skeletal muscle differentiation. Journal of cellular physiology 227, 383-389
    140. Karetsou, Z., Sandaltzopoulos, R., Frangou-Lazaridis, M., Lai, C. Y., Tsolas, O., Becker, P. B., and Papamarcaki, T. (1998) Prothymosin alpha modulates the interaction of histone H1 with chromatin. Nucleic acids research 26, 3111-3118
    141. George, E. M., and Brown, D. T. (2010) Prothymosin alpha is a component of a linker histone chaperone. FEBS letters 584, 2833-2836
    142. Kepert, J. F., Mazurkiewicz, J., Heuvelman, G. L., Toth, K. F., and Rippe, K. (2005) NAP1 modulates binding of linker histone H1 to chromatin and induces an extended chromatin fiber conformation. The Journal of biological chemistry 280, 34063-34072
    143. Miller, K. E., and Heald, R. (2015) Glutamylation of Nap1 modulates histone H1 dynamics and chromosome condensation in Xenopus. The Journal of cell biology 209, 211-220
    144. Finn, R. M., Browne, K., Hodgson, K. C., and Ausio, J. (2008) sNASP, a histone H1-specific eukaryotic chaperone dimer that facilitates chromatin assembly. Biophysical journal 95, 1314-1325
    145. Zhang, Q., Giebler, H. A., Isaacson, M. K., and Nyborg, J. K. (2015) Eviction of linker histone H1 by NAP-family histone chaperones enhances activated transcription. Epigenetics & chromatin 8, 30
    146. Zhu, D., Fang, J., Li, Y., and Zhang, J. (2009) Mbd3, a component of NuRD/Mi-2 complex, helps maintain pluripotency of mouse embryonic stem cells by repressing trophectoderm differentiation. PloS one 4, e7684
    147. Rais, Y., Zviran, A., Geula, S., Gafni, O., Chomsky, E., Viukov, S., Mansour, A. A., Caspi, I., Krupalnik, V., Zerbib, M., Maza, I., Mor, N., Baran, D., Weinberger, L., Jaitin, D. A., Lara-Astiaso, D., Blecher-Gonen, R., Shipony, Z., Mukamel, Z., Hagai, T., Gilad, S., Amann-Zalcenstein, D., Tanay, A., Amit, I., Novershtern, N., and Hanna, J. H. (2013) Deterministic direct reprogramming of somatic cells to pluripotency. Nature 502, 65-70
    148. Li, J., and Johnson, S. E. (2006) ERK2 is required for efficient terminal differentiation of skeletal myoblasts. Biochemical and biophysical research communications 345, 1425-1433
    149. Gredinger, E., Gerber, A. N., Tamir, Y., Tapscott, S. J., and Bengal, E. (1998) Mitogen-activated protein kinase pathway is involved in the differentiation of muscle cells. The Journal of biological chemistry 273, 10436-10444
    150. Krskova, L., Augustinakova, A., Drahokoupilova, E., Sumerauer, D., Mudry, P., and Kodet, R. (2011) Rhabdomyosarcoma: molecular analysis of Igf2, MyoD1 and Myogenin expression. Neoplasma 58, 415-423
    151. Bridge, J. A., Liu, J., Qualman, S. J., Suijkerbuijk, R., Wenger, G., Zhang, J., Wan, X., Baker, K. S., Sorensen, P., and Barr, F. G. (2002) Genomic gains and losses are similar in genetic and histologic subsets of rhabdomyosarcoma, whereas amplification predominates in embryonal with anaplasia and alveolar subtypes. Genes, chromosomes & cancer 33, 310-321
    152. Petricoin, E. F., 3rd, Espina, V., Araujo, R. P., Midura, B., Yeung, C., Wan, X., Eichler, G. S., Johann, D. J., Jr., Qualman, S., Tsokos, M., Krishnan, K., Helman, L. J., and Liotta, L. A. (2007) Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer research 67, 3431-3440
    153. Rosenbloom, K. R., Sloan, C. A., Malladi, V. S., Dreszer, T. R., Learned, K., Kirkup, V. M., Wong, M. C., Maddren, M., Fang, R., Heitner, S. G., Lee, B. T., Barber, G. P., Harte, R. A., Diekhans, M., Long, J. C., Wilder, S. P., Zweig, A. S., Karolchik, D., Kuhn, R. M., Haussler, D., and Kent, W. J. (2013) ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic acids research 41, D56-63
    154. Chen, K.-W., Chang, Y.-J., and Chen, L. (2015) SH2B1 orchestrates signaling events to filopodium formation during neurite outgrowth. Communicative & Integrative Biology 8, e1044189
    155. Otto, A., Collins-Hooper, H., Patel, A., Dash, P. R., and Patel, K. (2011) Adult skeletal muscle stem cell migration is mediated by a blebbing/amoeboid mechanism. Rejuvenation research 14, 249-260
    156. Sprong, H., van der Sluijs, P., and van Meer, G. (2001) How proteins move lipids and lipids move proteins. Nature reviews. Molecular cell biology 2, 504-513
    157. Kim, J. H., Jin, P., Duan, R., and Chen, E. H. (2015) Mechanisms of myoblast fusion during muscle development. Current opinion in genetics & development 32, 162-170

    QR CODE