簡易檢索 / 詳目顯示

研究生: 李宇尉
論文名稱: 基於動態規劃之五軸側銑路徑最佳化
Optimized Tool Path Planning in 5-Axis Flank Milling based on Dynamic Programming Techniques
指導教授: 瞿志行
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 115
中文關鍵詞: 五軸加工側銑刀具路徑動態規劃直紋曲面
外文關鍵詞: 5-axis machining, flank milling, tool path planning, dynamic programming, ruled surface
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自由曲面提供汽車、航太與冷凍空調業產品設計上極佳的造型能力,例如重要零組件渦輪葉片的幾何非常複雜,其加工製造過程多採用五軸切削的方式,最為關鍵的工作即是側銑葉片時的刀具路徑規劃。儘管先前文獻已探討此一問題,但大多透過調整單一刀具位置降低切削誤差,尚無考量曲面整體側銑誤差最小化的研究。有鑑於此,本論文深入探討如何減少曲面整體側銑誤差,根據動態規劃技巧,提出二項創新之最佳化側銑路徑產生演算法。透過適當參數組合,成功地將實際切削問題轉化成數學規劃問題,可搭配不同評估標準進行誤差之最小化。分別探討「刀具半徑」、「邊界曲線離散點數」、「可橫跨點數」、「曲面延伸比率」及「限制直紋線橫跨值」等參數對最佳解之影響。並由結果中歸納出曲面幾何形狀對最佳刀具路徑的影響。本研究提出不同簡化程度之「直紋線誤差估算」、「切線向量內積」及「近似體積誤差估算」評估標準,將對應最佳化路徑與模擬軟體的結果進行比較,驗證其於側銑路徑最佳化的實用性。最後以一直紋曲面為例,分別以「未延伸曲面之最佳路徑」、「延伸曲面之最佳路徑」及「傳統等參數直紋線刀具路徑」進行五軸加工實驗,並量測加工曲面之誤差值,進而驗證本研究方法論之可行性。本研究提出之方法論可自動產生五軸側銑之最佳路徑,提高加工表面精度,進而提升複雜幾何的製造技術水準。


    Free form surfaces offer an excellent modeling capability of product design in automobile, aerospace, and air-conditioning industries. For example, one critical component in the industries, turbine blade, often contains such complex geometries. Its manufacturing process involves 5-axis CNC machining, in which the crucial task is tool path planning of the blade surface. Despite of previous studies concerning this problem, most of them independently adjusted individual tool positions for educing the machining error. Very few studies investigate optimization of the total deviation on the entire surface in an integrated fashion. To overcome this deficiency, this work aims at reducing the total machining error in 5-axis flank milling of ruled surfaces. Two novel methods based on dynamic programming techniques are proposed for generation of the optimized tool path. The machining problem is thus transformed into a mathematical programming task. The influences of important parameters: tool radius, the number of the discrete number on the boundary curves, the maximal span over the discrete points, the surface extension ratio, and the maximal tool contact length, are examined. This research discusses how the intrinsic properties of the surface affect the optimized tool path. In addition, three error evaluation criteria: approximating tool envelop, best matching of the curve tangents, and grid-height based volumetric error, with an increasing degree of simplification, are tested. The corresponding estimated errors are compared with the simulation results generated from commercial software to verify their practicality in the tool path optimization. A ruled-surface part is used as an example in 5-axis milling tests with the tool paths computed by different methods. The machining error is measured using a CMM for each finished part. The measure result indicates that the proposed method produces the best machining quality. It shows that this work provides effective methods for automatic generation of optimized tool path and improving the machining quality in 5-axis flank milling. The machining technology of complex geometries is thus enhanced.

    第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的 2 1.3研究架構 4 第二章 文獻探討 7 2.1 五軸側銑技術之相關探討 7 2.2 誤差衡量之相關探討 11 2.3 CAM軟體作法 12 2.4 小結 16 第三章 最佳化曲面側銑路徑演算法 17 3.1 參數介紹 17 3.2 以離散點為階段建立動態規劃網路圖 20 3.3 以指定範圍為階段建立動態規劃網路圖 29 3.4小結 36 第四章 誤差評估標準 39 4.1 直紋線誤差估算 41 4-1-1 三角直紋線誤差估算 42 4-1-2 四角直紋線誤差估算 43 4.2 切線向量內積 44 4-2-1 三角切線向量內積 45 4-2-2 四角切線向量內積 47 4.3 近似體積誤差估算 48 4-3-1 三角路徑誤差估算 53 4-3-2 四角路徑誤差估算 55 第五章 不同評估標準與模擬軟體比較 57 5.1 直紋線誤差估算 59 5.2 切線向量內積 64 5.3 近似體積誤差估算 68 第六章 曲面切削之探討及說明 73 6.1 不同類型曲面切削之探討 73 6-1-1曲率較小之曲面 73 6-1-2 扭曲程度較大之曲面 76 6-1-3 上下曲線長度差異大之曲面 79 6.2可展開曲面切削之探討 81 6.3 參數調整的影響 83 6-3-1 刀具半徑之影響 85 6-3-2 邊界曲線離散點之影響 87 6-3-3 可橫跨點數之影響 89 6-3-4 曲面延伸比率之影響 91 6-3-5 限制直紋線橫跨值之影響 93 6.4 指定刀具路徑切削範例 95 6.5 與CAM軟體作法之比較 96 第七章 曲面側銑實作與量測 98 7.1 曲面側銑實例 98 7.2 加工機台之描述與參數設定 99 7.3 3D量測儀之驗證 103 第八章 結論與未來展望 110 8.1 結論 110 8.2 未來展望 111

    [1] 黃煒能 (2006),含分離葉片離心式渦輪之整合性刀具路徑規劃架構,碩士論文,清華大學工業工程與工程管理研究所。
    [2] H. K. Tonshoff, C. Gey and N. Rackow, “Flank Milling Optimization – The Flamingo Project,” Air and Space Europe, Vol. 3, No. 3/4, pp. 60-63, 2001.
    [3] H. Henning (1975), “Fünfachsiges NC-Fräsen Gekrümmter Flächen,” Ph.D. Dissertation, U. Stuttgart, Germany.
    [4] J. T. Chen and C. H. Chu (2004),”Automatic Avoidance of Local Tool Interference in Five-Axis Flank Milling,” The 21st National Conference on Mechanical Engineering, The Chinese Society of Mechanical Engineers, Kaohsiung, Taiwan.
    [5] E. L. J. Bohez, S. D. R. Senadhera, K. Pole, J. R. Duflou and T. Tar (1997), “A Geometric Modeling and Five-Axis Machining Algorithm for Centrifugal Impellers,” Journal of Manufacturing Systems, Vol. 16, No. 6, pp.422-436.
    [6] D. M. Tsay and M. J. Her (2001), “Accurate 5-Axis Machining of Twisted Ruled Surfaces,” ASME Journal of Manufacturing Science and Engineering, Vol. 123, pp. 731-738.
    [7] D. M. Tsay, H. C. Chen and M. J. Her (2002), “A Study on Five-Axis Flank Machining of Centrifugal Compressor Impellers,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 124, pp. 177-181.
    [8] C. Menzel, S. Bedi and S. Mann (2004), “Triple Tangent Flank Milling of Ruled Surfaces,” Computer-Aided Design, Vol. 36, pp. 289-296.
    [9] S. Bedi, S. Mann and C. Menzel (2003), “Flank Milling with Flat End Milling Cutters,” Computer Aided Design, Vol. 35, pp. 293-300.
    [10] X. W. Liu (1995), “Five-Axis NC Cylindrical Milling of Sculptured Surfaces,” Computer-Aided Design, Vol. 27, No. 12, pp. 887-894.
    [11] C. Lartigue, E. Duc and A. Affouard (2003), “Tool Path Deformation in 5-Axis Flank Milling Using Envelop Surface,” Computer-Aided Design, Vol. 35, pp. 375-382.
    [12] John C.J. Chiou (2004), “Accurate Tool Position for Five-Axis Ruled surface Machining by Swept Envelope Approach,” Computer-Aided Design, Vol. 36, pp. 967-974.
    [13] C. H. Chu and J. T. Chen (2006), “Tool Path Planning for 5-Axis Flank Milling with Developable Surface Approximation,” International Journal of Advanced Manufacturing Technology, Vol. 29, No. 7-8, pp. 707-713.
    [14] K. Weinert, S. Du, P. Damm and M. Stautner (2004), “Swept Volume Generation for the Simulation of Machining Processes,” International Journal of Machine tools & Manufacture. Vol. 44, pp. 617-628.
    [15] C. Li, S. Mann and S. Bedi (2005), “Error Measurements for Flank Milling, ” Computer-Aided Design, Vol. 37, No. 14, pp. 1459-1468.
    [16] http://www.catia.ibm.com/
    [17] http://www.catech.com/
    [18] G. Aumann, (2004). “A Simple Algorithm for Designing Developable Bézier Surface,” Computer Aided Geometric Design, Vol. 20, pp. 601-616.
    [19] C. H. Chu and J. T. Chen, (2006). “Characterizing Design Degrees of Freedom for Composite Developable Bézier Surfaces and Their Applications in Design and Manufacturing,” , Robotics & CIM, Vol. 23, No. 1, pp. 116-125.
    [20] C. H. Chu and J. T. Chen, (2005). “Five-Axis Flank Machining of Ruled Surfaces with Developable Surface Approximation,” CAD & Graphics 2005, pp. 238-243, Hong Kong.
    [21] E. L. J. Bohez, S. D. R. Senadhera, K. Pole, J. R. Duflou and T. Tar, “A Geometric Modeling and Five-Axis Machining Algorithm for Centrifugal Impellers,” Journal of Manufacturing Systems, Vol. 16, No. 6, pp. 422-436,1997.
    [22] 陳建廷 (2005),可展開性自由曲面之幾何模擬:理論分析及設計與製造之應用,碩士論文,清華大學工業工程與工程管理研究所。
    [23] http://www.rhino3d.com/
    [24] http://www.spatial.com/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE