簡易檢索 / 詳目顯示

研究生: 李佩倫
Pei-Lun Lee
論文名稱: 利用超重力場及超臨界二氧化碳合併法回收排氣中之VOCs
Desorption of VOCs from Activated Carbon by Supercritical CO2 in a Rotating Packed Bed
指導教授: 談駿嵩
Chung-Sung Tan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 71
中文關鍵詞: 超重力超臨界二氧化碳脫附四氟丙醇甲苯
外文關鍵詞: HIGEE, supercritical CO2, desorption, TFP, Toluene
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工業製程的進步,無論是半導體產業,或是其他化學工業,常常需要使用揮發性有機化合物(Volatile Organic Compounds,簡稱VOCs )作為塗裝或清洗等之溶劑,因為大量的生產製造,廢棄的有機溶液或氣體之排放量相當驚人,因此揮發性有機化合物的回收,對於環境品質保護甚為重要。過去在處理廢水廢氣時常使用固定填充床,但由於質傳效果較差,因而常需要龐大的體積才能達到所要處理的目的。以往研究顯示若改變流體性質、填充物性質和流體操作條件可增加分離或反應的效果,若再加上重力場,則溢流(Flooding)的可能性會大幅降低,亦可大幅提升質傳速率。因此,若以高速旋轉填充床(Rotating Packed Bed,簡稱RPB)所產生的超重力場提升質傳速率,則可縮減回收VOCs的設備體積,此種操作稱之為超重力技術(High Gravity,簡稱Higee)。
    基於超重力場的特性,本研究分別以四氟丙醇(2,2,3,3-Tetrafluropropanol,TFP)與甲苯(Toluene)作為VOCs之代表,探討當活性碳吸附VOCs後,在超重力場下以超臨界二氧化碳脫附活性碳之效果。實驗數據顯示在315 K下,四氟丙醇與甲苯能有效被活性碳吸附於一填充床中。在超重力場下,超臨界二氧化碳能更有效的脫附四氟丙醇與甲苯,亦即超臨界二氧化碳能結合離心力而在脫附中產生加乘之效果。其脫附效率會隨著轉速及壓力的增加而提升,流速增加亦會提高脫附效率。在較低壓下(8.96 MPa、11.72 MPa),脫附效率隨溫度增加而下降,而在較高壓力下(15.86 MPa),則存在ㄧ最佳操作溫度。當活性碳粒徑較小時,因內部質傳阻力的影響較不顯著,是以提升脫附之速率。就設備體積與脫附效率而言,以超重力旋轉床取代傳統固定床是很好的選擇。


    目 錄 摘要 I 目錄 III 圖目錄 V 表目錄 VI 第一章 緒論 1 第二章 文獻回顧 4 2-1 傳統去除氣體中揮發性有機化合物之方法 4 2-2 活性碳簡介 7 2-3 活性碳吸附機制 9 2-4 活性碳脫附機制 11 2-5 活性碳再生 11 2-6 超臨界流體技術 15 2-6-1 超臨界流體簡介 15 2-6-2 利用超臨界流體脫附 15 2-7 超重力場系統 18 2-7-1 超重力場簡介 18 2-7-2 超重力旋轉床之分類 22 第三章 實驗部份 26 3-1 實驗裝置與步驟 26 3-1-1 活性碳及石英砂前處理 26 3-1-2 吸附實驗步驟 26 3-1-3 脫附實驗步驟 28 3-1-4 分析方法 29 3-2 實驗藥品 29 3-3 設備及分析儀器 31 第四章 結果與討論 36 4-1四氟丙醇之吸脫附 36 4-1-1 吸附 36 4-1-2 吸附 36 4-2甲苯之吸脫附 48 4-2-1 吸附 48 4-2-2 吸附 48 第五章 結論 59 第六章 參考文獻 60 附錄 68 圖目錄 圖1. 超臨界CO2之密度及壓力相關圖 23 圖2. 逆流式填充旋轉床示意圖 24 圖3. 錯流式填充旋轉床示意圖 24 圖4. 實驗裝置圖 34 圖5. Autoclave與旋轉填充床之結構圖 35 圖6. TFP之吸附突破曲線 37 圖7. TFP-轉速對脫附效率之影響(0.79 cm3/min) 38 圖8. TFP-轉速對脫附效率之影響(1.57 cm3/min) 39 圖9. TFP-壓力對脫附效率之影響 41 圖10. TFP-流量對脫附效率之影響 42 圖11. TFP-溫度對脫附效率之影響(8.96 MPa) 43 圖12. TFP-壓力對脫附效率之影響(11.72 MPa) 44 圖13. TFP-壓力對脫附效率之影響(15.86 MPa) 46 圖14. TFP-粒徑對脫附效率之影響 47 圖15. 甲苯之吸附突破曲線 49 圖16. 甲苯-轉速對脫附效率之影響(1.57 cm3/min) 50 圖17. 甲苯-壓力對脫附效率之影響 52 圖18. 甲苯-流量對脫附效率之影響 53 圖19. 甲苯-溫度對脫附效率之影響(8.96 MPa) 54 圖20. 甲苯-壓力對脫附效率之影響(11.72 MPa) 55 圖21. 甲苯-壓力對脫附效率之影響(15.86 MPa) 57 圖22. 甲苯-粒徑對脫附效率之影響 58 表目錄 表1.活性碳之孔隙大小分佈狀況 25

    Bansal, R. C.; Donnet, J. B. Activated Carbon, Marcel Dekker Inc.: New York, 1998.
    Brady, B. O.; Dooley, K. M.; Knopf, F. C.; Gambrell, R. P. Supercritical Extraction of Toxic Organics from Soil. Ind. Eng. Chem. Res., 1987, 26, 261-268.
    Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc., 1938, 60, 309-319.
    Chen, Y. S.; Liu, H. S. Absorption of VOCs in a Rotating Packed Bed. Ind. Eng.Chem. Res., 2002, 41, 1583-1588.
    Chen, J. H.; Wong, D. S. H.; Tan, C. S.; Subramanian, R.; Lira, C. T.; Orth, M. Adsorption and Desorption onto and from Activated Carbon at High Pressures. Ind. Eng. Chem. Res., 1997, 36, 2808-2815.
    Dubinin, M. M.; Plarnik, G. M.; Ezverina, E. F. Integrated Study of the Porous Structure of Activated Carbon from Carbonized Source. Carbon. 1964, 2, 261.
    Dubinin, M. M. Adsorption Properties and Microporous Structure of Carbonaceous Adsorbents. Carbon, 1987, 593-598.
    DeFilippi, R. P.;Krukonis, V. J.;Robey, R. J.;Modell, M.Supercritical Fluid Regeneration of Activated Carbon for Adsorption of Pesticides, Repor;EPA-00/2-80-054;Washington, DC, 1980.
    Dooley, K. M.; Kao, C. P.; Gambrell, R. P.; Knopf, F. C. The Use of Entrainers in the Supercritical Extraction of Soils Contaminated with Hazardous Organics. Ind. Eng. Chem. Res. 1987, 26, 2058-2062.
    Erkey, C.; Madras, G. ; Orejuela, M.; Akgerman, A. Supercritical Carbon Dioxide Extraction of Organics from Soil. Environ. Sci. Technol. 1993, 27, 1225-1231.
    Guo, K.; Feng, Y.; Yang, C.; Zheng, C. Pressure Drop of Centrifugal Gas Flow Through Rotating Beds. Ind. Eng. Chem. Res. 2000, 39, 829-834.
    Guo, F.; Guo, K.; Feng, Y.; Chen, J.; Zheng, C.; Gardner, N. C. Synchronous Visual and RTD Study on Liquid Flow in Rotating Packed-bed Contactor. Chemical Engineering Science., 2000, 55, 1699-1706.
    Harriott, P.; Chang, A. T. Y. Kinetics of Spent Activated Carbon Regeneration.AIChE , 1988, 34, 1656-1622.
    Jou, C. G. Application of Activated Carbon in a Microwave Radiation Field to Treat Trichloroethylene.Carbon, 1998, 36, 11, 1643-1648.
    Kim, K. Carbon-Electronchemical and Physicochemical Properties; John Wiley & Sons, 1987.
    Kander, R. G.; Paulaitis, M. E. In Chemical Engineering at Supercrutical Conditions. Ann Arbon Science., 1983, 461.
    Kumar, M. P.; Rao, D. P. Studies on a High-Gravity Gas-Liquid Contactor. Ind. Eng. Chem. Res ,1990, 29, 917-920.
    Kunio, K.; Kenji, M. ; Yoshinori, S. The Thermal Regeneration of Spent Activated Carbon. J. Chem. Eng. Jap. ,1980, 13(3), 214-219.
    Langmuir, I. Adsorption of Gases by Solids. J. Am. Chem. Soc., 1916, 38 (10), 2267-2295.
    Langmuir, I. Adsorption of Gases on Plane Surface of Glass Mica and Platinum. J. Am. Chem. Soc., 1918, 40, 1361-1382.
    Lin C. C.; Liu, H. S. Adsorption in Centrifugal Fields Basic Dye Adsorption by Activated Carbon. Ind. Eng. Chem. Res. , 2000, 39, 161-167.
    Lin, C. C. Application of Granular Activated Carbon for Water And Wastewater Purification. PhD Dissertation, university of Texas at Dallas, USA, 1982.
    Lin, C. C.; Chen, Y. S.; Liu, H. W. Adsorption of Dedecane from Water in a Rotating Packed Bed. J. Chin. Inst. Chem. Engrs.,2004, 5, 531-538.
    Liu, H. S.; Lin, C. C.; Wu, S. S.; Hsu, H.W. Characteristics of a Rotating Packed Bed. Ind. Eng. Chem. Res. 1996, 35, 3590-3596.
    Macnaughton, S. J.; Foster, N. R. Supercritical Adsorption and Desorption Behavior of DDT on Activated Carbon Using Carbon Dioxide. Ind. Eng. Chem. Res., 1995, 34, 275-282.
    Madras, G.; Erkey, C.; Akgerman, A. Supercritical Fluid Regeneration of Activated Carbon Loaded with Heavy Molecular Weight Organics. Ind. Eng. Chem. Res., 1993, 32, 1163-1168.
    Modell, M.; Robey, R. J.; Krukinis, V. J.; DeFilippi, R. P.;Oestreich, D. Supercritical Fluid Regeneration of Activated Carbon. Presented at the AIChE Meeting, Boston, 1979.
    Munjal S.; Dudukovic M. P.; Ramachandran, P. A. Mass Transfer in Rotating Packed Beds: I. Development of Gas-Liquid and Liquid-Solid Mass-Transfer Coefficients. Chem. Eng. Sci. 1989a, 44, 2245-2256.
    Munjal S.; Dudukovic M. P.; Ramachandran, P. A. Mass Transfer in Rotating Packed Beds: II. Experimental Results and Comparison with Theory and Gravity Flow. Chem. Eng. Sci. 1989b,44, 2257-2268.
    Perrotti, A. E., Rodman, C. A. Factors involved with Biological Regeneration of Activated Carbon. AIChE, 1974, 70 (144), 317-325
    Ramshaw, C.; Mallinson, R. H. Mass Transfer Process. U.S. Patent 4, 383, 255, 1981.
    Rao, D. P.; Sharma, A. Gas-Phase Mass Transfer in a Centrifugal Contactor. Ind. Eng. Chem. Res. 2001, 40, 384-392.
    Rao, D. P.; Goswami, P. S.; Bhowal, A. Process Intensification in Rotating Packed Beds(HIGEE) : An Appraisal. Ind. Eng. Chem. Res., 2004, 43, 1150-1162.
    Recasens, F.; McCoy, B. J.; Smith, J. M. Desorption Processes : Supercritical Fluid Regeneration of Activated Carbon. AIChE, 1989, 35(6), 951-958.
    Schnider, G. M. Physicochemical Principles of Extraction with Supercritical Gases. Angew. Chem. Int. Ed. Engl., 1978, 17, 716-727.
    Smisek, M.; Cerny, S. Activated Carbon; Elserier : New York, 1970.
    Srinivasan, M. P.; Smith, J. M.; McCoy, B. J. Supercritical Fluid Desorption from Activated Carbon. Chem. Eng. Sci., 1990, 45 (7), 1885-1895.
    Stenzel, M. H. Removal Organics by Activated Carbon Adsorption. Chemical Engineering Process., 89(4), 1993, 36-43.
    Sutlkno,T.; Himmelstein, K. J. Desorption of Phenol from Activated Carbon by Solvent Regeneration. Ind. Eng. Chem. Fundam., 1983, 22, 420-425.
    Tan, C. S. ; Liou, D. C. Desorption of Ethyl Acetate from Activated Carbon by Supercritical Carbon Dioxide. Ind. Eng. Chem. Res., 1988, 27, 988-991.
    Tan, C. S.;Liou, D. C. Supercritical Regeneration of Activated Carbon Loaded with Benzene and Toluene. Ind. Eng. Chem. Res., 1989a, 28, 1222-1226.
    Tan, C. S.;Liou, D. C. Regeneration of Activated Carbon Loaded with Toluene by Supercritical Carbon Dioxide. Sep. Sci. Technol., 1989b, 24(1-2), 111-127.
    Tan, C. S.; Lin, C. C; Liu, W. T. Removal of Carbon Dioxide by Absorption in a Rotating Packed Bed. Ind. Eng. Chem. Res., 2003, 42, 2381-2386.

    Vivian, J. E.; Brain, P. L. T.; Krukonis, V. J. Influence of Gravitational Force on Gas Absorption in Packed Columns. AIChE, 1965, 11, 1087-1090.
    Walker, P. L.; Cariaso, O. C.; Ismail, I. M. K. Oxygen Chemisorption on As-Received and Acid-Treated Activated Carbon. Carbon, 1980, 18, 375-377.
    Zhang, J. Experiment ang Modeling of Liquid Flow and Mass Transfer in Rotating Packed Bed. PhD Dissertation, Beijing University of Chemical Technology.
    Zheng, C. ; Guo, K. ; Feng, Y. ;Yang, C.; Gardner, N.C. Pressure Drop of Centripetal Gas Flow through Rotating Beds. Ind. Eng. Chem. Res., 2000, 39, 829-834.
    蔣本基., "活性碳物理化學特性對VOCs吸附之影響, " 工業污染防治手冊,第58期, 1996.
    蔣本基、張璞, "有機溶劑蒸氣之吸附及脫附研究," 工業污染防治,第58期, 1996.
    邱正宏, "吸附於活性碳表面揮發性有機物之熱脫附動力學研究, " 碩士論文,國立中山大學環境工程研究所(1993)。
    楊英傑,"以球狀活性碳吸附水溶液中甲苯及其脫附方法之研究," 碩士論文,國力成功大學化學工程研究所 (1992)。
    鄭仲恩, "以超重力技術自排放氣體中移除二氧化碳," 碩士論文,國立清華大學化學工程研究所(2004)。
    陳昱邵, "旋轉填充床中黏度對貭傳影響之研究," 博士論文,國立台灣大學化學工程研究所(2004)。
    賴慶智, "超臨界狀態下之吸附及擴散現象," 博士論文,國立清華大學化學工程研究所(1993)。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE