研究生: |
楊逸嵐 Yi-Lan Yang |
---|---|
論文名稱: |
具隔離及切換式整流器前級變頻器系統之開發與數位控制 Development and digital control of inverter systems with galvanic isolation and front-end SMR |
指導教授: |
廖聰明
Chang-Ming Liaw |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 149 |
中文關鍵詞: | 單相變頻器 、三相變頻器 、模組組接 、諧振轉換器 、零電壓切換 、高頻變壓器 |
外文關鍵詞: | Single-phase inverter, three-phase inverter, modular connection, resonant converter, zero-voltage switching, high-frequency transformer |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The major purposes of this thesis lie in the development and digital control of inverter systems with galvanic isolation and three-phase front-end switch-mode rectifier (SMR). First, the single-phase inverters with low-frequency output transformer isolation and DC-link high-frequency transformer isolation are established and comparatively evaluated their performance. The latter is achieved by employing a DC/DC isolated full-bridge converter to establish DC-link voltage for its followed inverter. A simple load resonant soft switching scheme is designed to yield zero-voltage switching. In control aspect, the robust waveform control method is developed to let the established inverters possess good transient and static waveform tracking characteristics under linear and nonlinear loads. For the isolated DC-link DC/DC converter, well-regulated DC-link voltage is also preserved via proper dynamic control.
Switch-mode rectifier (SMR), or called power factor corrected (PFC) rectifier, has been increasingly employed as a front-end converter of power equipment to provide well-regulated and/or boostable DC voltage with satisfactory line drawn power quality. In the developed inverter systems, a three-phase single-switch (3P1SW) SMR is employed, which is operated under discontinuous current mode to possess reasonably good power quality without current control loop. The proper circuit and control designs are also performed to yield good DC output and AC input control characteristics.
As generally recognized, a three-phase inverter can be constructed using single power module consisting of six power switches, or formed via proper modulation connections using multiple single-phase inverters. One purpose of this thesis is to perform the comparative study for these two types of three-phase inverters. Specifically speaking, a single module three-phase inverter is established, and a delta-connected three-phase inverter is formed using the developed single-phase inverters. For the latter, it can become V-connected inverter automatically as one module is faulted. The three-phase power is continuously provided subject to the reduction of apparent power rating.
In recent years, miniaturization of power equipment has been an attractive affair. This can be promoted via power stage integration and common digital control environment for multiple power stages. In this thesis, the constituted power stages in the developed inverters are digitally controlled in a common digital signal processor (DSP). Only some necessary signal conditioner circuits are externally added to solve the capability limits possessed by the employed DSP. With proper control scheme design and practical digital considerations, the developed inverter systems possess good operating characteristics in many aspects, which are demonstrated experimentally.
本論文旨在研製具切換式整流器前級及電氣隔離之變頻器系統並從事其數位控制。首先,建立具低頻輸出隔離變壓器與高頻變壓器隔離直流鏈之單相變頻器,並比較評估其操控性能。後者以具高頻隔離變壓器之全橋式直流/直流轉換器提供變頻器之直流鏈電壓。為達到零電壓軟式切換,本文採用負載串聯諧振軟式切換。於控制方面,藉由強健波形控制法則,達到在線性與非線性負載下皆能具有良好穩態及動態之瞬間波形追控,對於隔離型全橋式直流/直流轉換器,亦提供適當之控制器設計,以使其具有良好調節特性。
切換式整流器亦稱功因校正整流器,因可提供具良好調控之直流鏈電壓及交流輸入電力品質,已日漸廣泛地被用為電力設備之前端轉換器。三相單開關切換式整流器在不連續導通模式下,因具有良好之電力品質而不需電流迴授控制。因此,本文採用此型切換式整流器,藉由妥善之電路及控制器設計,以獲得良好之直流輸出電壓及交流入電電力品質控制特性。
眾所皆知地,三相變頻器可用具有六開關之單一功率模組建構,或由多個單相變頻器組接形成。本論文另一目的在於建構並比較評估此兩種組態三相變頻器之效能,更具體而言,本文將建立單一模組化三相變頻器,以及由單相變頻器組接成 接之三相變頻器。後者在有一模組故障時,可自動地變成V接三相變頻器,在降低額定下持續提供三相電源。
近年來,電力電子設備之小型化已極其吸引人關注,此可藉由多級電力電路之整合與共同數位控制環境促成。在所建構之系統中,將由同一數位信號處理器從事變頻器系統中多功率級之數位化控制,只需外加少數類比電路元件,解決所採數位信號處理器之能力限制,由適當之控制機構設計及一些控制實務考量,可得良好變頻器系統操控性能。所建構變頻器系統之性能將以一些實測結果驗證。
A. Basics of Inverters
[1] B. K. Bose, Modern Power Electronics and AC Drive, 2nd ed. New Jersey: Prentice-Hall, 2002.
[2] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, 1st ed. New York: John Wiley & Sons, 2003.
[3] T. H. Chen and C. M. Liaw, “Soft-switching inverter for electrodynamic shaker,” in IEE Proc. IP-EPA, 1999, pp. 515-523.
[4] H. Deng, R. Oruganti and D. Srinivasan, “A neural network-based adaptive controller of single-phase inverters for critical applications,” in Proc. PEDS, 2003, vol. 2, pp. 915-920.
[5] P. J. M. Heskes and J. H. R. Enslin, “Power quality behavior of different photovoltaic inverter topologies,” in Proc. PCIM, 2003, pp. 1-5.
[6] Y. Haung, J. Wang, F. Z. Peng, and D. Yoo, “Survey of the power conditioning system for PV power generation,” in Proc. PESC, 2006, pp. 1-6.
[7] R. Gonzalez, J. Lopez, P. Sanchis, E. Gubia, A. Ursua, L. Marroyo, “High-efficiency transformerless single-phase photovoltaic inverter,” in Proc. EPE-PEMC, 2006, pp. 1895-1900.
[8] X. Yaosuo, C. Liuchen, S. Pinggang, “Recent Developments in Topologies of Single-phase Buck-Boost Inverters for Small Distributed Power Generators: An Overview,” in Proc. IPEMC, 2004, vol. 3, pp. 1118-1123.
B. Inverter PWM Switching and Dynamic Control Methods
[9] J. Holtz, “Pulsewidth modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, pp. 410-420, 1992.
[10] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, IEEE Press, 2003.
[11] H. Dehbonei, L. Borle and C. V. Nayar, “A review and a proposal for optimal harmonic mitigation in single-phase pulse width modulation,” in Proc. PEDS,
2001, vol. 51, pp. 408-414.
[12] M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: A survey,” IEEE Trans. Ind. Electron., vol. 45, pp. 691-703, 1998.
[13] D. Czarkowski, D. V. Chudnovsky and I. W. Selesnick, “Solving the optimal PWM problem for single-phase inverters,” IEEE Trans. Circuits Syst. I, vol. 49, pp. 465-475, 2002.
[14] S. R. Bowes and D. Holliday, “Optimal regular-sampled PWM inverter control techniques,” IEEE Trans. Ind. Electron., vol. 54, pp. 1547-1559, 2007.
[15] V. Blasko, “A novel method for selective harmonic elimination in power electronic equipment,” IEEE Trans. Power Electron., vol. 22, pp. 223-228, 2007.
[16] K. Meghriche, O. Mansouri, and A. Cherifi, “Microcontroller-based single phase inverter using a new switching strategy,” in Proc. IPEMC, 2006, pp. 1-6.
[17] K. M. Cho, W. S. Oh, Y. T. Kim, and H. J. Kim, “A new switching strategy for pulse width modulation (PWM) power converters,” IEEE Trans. Ind. Electron., vol. 54, pp. 330-337, 2007.
[18] J. Bao, D.G. Holmes, Z. Bai, Z. C. Zhang and D. Xu, “PWM control of a 5-level single-phase current-source inverter with controlled intermediate DC-link current,” in Proc. PESC, 2006, pp. 1-6.
[19] M. J. Ryan, W. E. Brumsickle and R. D. Lorenz, “Control topology options for single-phase UPS inverters,” IEEE Trans. Ind. Appl., vol. 33, no. 2, pp. 493-501, 1997.
[20] K. S. Low, “A DSP-based variable AC power source,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 936-941, 1999.
[21] C. Rech, H. Pinherio, H. A. Grundling, H. L. Hey and J. Pinheiro, “Analysis and design of a repetitive predictive-PID controller for PWM inverters,” in Proc. PESC, 2001, vol. 2, pp. 17-21.
[22] G. Alarcon, V. Cardenas, S. Ramirez, N. Visairo, C. Nunez, M. Oliver and H. Sira-Ramirez, “Nonlinear passive control with inductor current feedback for an UPS inverter,” in Proc. PESC, 2000, pp. 1414-1418.
[23] T. Senjyu, H. Kamifurutono and K. Uezato, “Robust current control method with disturbance voltage observer for voltage source PWM inverter,” in Proc. PEDS, 1995, pp. 379-384.
[24] T. H. Chen and C. M. Liaw, “Vibration acceleration control of an inverter-fed electrodynamic shaker,” IEEE/ASME Trans. Mechatronics, vol. 4, pp. 60–70, 1999.
[25] C. M. Liaw, W. C. Yu and T. H. Chen, “Random vibration test control of inverter-fed electrodynamic shaker,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 587-594, 2002.
[26] B. J. Kang and C. M. Liaw, “Robust hysteresis current-controlled PWM scheme with fixed switching frequency,” in Proc. IEE-Elect. Power Applicat., vol. 148, pp. 503-512, 2001.
[27] C. M. Richter, E. G. Carati, H. Pinheiro, H. L. Hey, J. R. Pinheiro and H. A. Grundling, “A three-phase AC power source using multivariable repetitive robust model reference adaptive control,” in Proc. ICAC, 2003, vol. 3, pp. 2300-2305.
[28] G. Willmann, D. F. Coutinho and L. F. A. Pereira, “A robust discrete-time controller for DC-AC inverters,” in Proc. IECON, 2005, pp. 213-218.
C. Dead Time Compensation
[29] J. Holtz and L. Springob, “Identification and compensation of torque ripple in high-precision permanent magnet motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 309-320, 1996.
[30] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, pp. 683-689, 1999.
[31] A. C. Oliveira, A. M. N. Lima and C. B. Jacobina, “Varying the switching frequency to compensate the dead-time in pulse width modulated voltage source inverters,” in Proc. PSEC, 2001, pp. 244-249.
[32] A. Cichowski and J. Nieznanski, “Self-tuning dead-time compensation method for voltage-source inverters,” IEEE Power Electronics Lett., vol. 3, no. 2, pp. 72-75, 2005.
[33] J. L. Lin, “A new approach of dead-time compensation for PWM voltage inverters,” IEEE Trans. Circuits Syst., vol. 49, no. 4, pp. 476-483, 2002.
[34] Y. Nakamura, H. Funato and S. Ogasawara, “Compensation of output voltage distortion analysis of PWM inverter with LC filter caused by device voltage drop,” in Proc. EPE, 2007, pp. 1-9.
[35] A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Improved dead-time compensation for sinusoidal PWM inverters operating at high switching frequencies,” IEEE Trans. Ind. Electron., vol. 54, pp. 2295-2304, 2007.
D. DC-link Ripple, Filter and Transformer Imbalance
[36] J. Sakly, P. Delarue and R. Bausiere, “Rejection of undesirable effects of input DC-voltage ripple in single-phase PWM inverters,” in Proc. IEE-Elect. Power Applicat., vol. 4, pp. 65-70, 1993.
[37] P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 65-70, 1993.
[38] F. Blaabjerg, D. O. Neacsu and J. K. Pedersen, “Adaptive SVM to compensate DC-link voltage ripple for four-switch three-phase voltage-source inverters,” IEEE Trans. Power Electron., vol. 14, pp. 743-752, 1999.
[39] P. A. Dahono, A. Purwadi and Qamaruzzaman, “An LC filter design method for single-phase PWM inverters,” in Proc. PEDS, 1995, vol. 2, pp. 571-576.
[40] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. ICPST, 2000, vol. 3, pp. 1659-1664.
[41] J. Gao, X. Zhao, X. Yang and Z. Wang, “The research on avoiding flux imbalance in sinusoidal wave inverter,” in Proc. IPEMC, 2000, vol. 3, pp. 1122-1126.
[42] M. Li and Y. Xing, “Digital voltage regulation with flux balance control for sine wave inverters,” in Proc. APEC, 2004, vol. 3, pp. 1709-1713.
E. Switch-Mode Rectifiers
[43] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “ A
review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[44] H. Mao, C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high-performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, pp. 437-446, 1997.
[45] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[46] A. R. Prasad, P. D. Ziogas and S. Manias, “An active power factor correction technique for three-phase diode rectifiers,” IEEE Trans. Power Electron., vol. 6, pp. 83-92, 1991.
[47] J. Yungtaek and M. M. Jovanovic, “A comparative study of single-switch three-phase high-power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, pp.1327-1334, 1998.
[48] D. Tokushima, H. Ishikawa, D. Wang and H. Naitoh, “Soft switched three-phase single switch boost-type rectifier,” in Proc. PCC, 2002, vol. 2, pp. 492-497.
[49] B. Wang, G. Venkataramanan and A. Bendre, “Unity power factor control for three-phase three-level rectifiers without current sensors,” IEEE Trans. Ind. Appl., vol. 43, pp. 1341-1348, 2007.
[50] J. W. Kolar, U. Drofenik and F. C. Zach, “VIENNA rectifier II—a novel single-stage high-frequency isolated three-phase PWM rectifier system,” IEEE Trans. Ind. Electron., vol. 46, pp. 674-691, 1999.
[51] A. B. Morton and I. M. Y. Mareels, “A generalized dynamical model for three-phase switch-mode converter circuits,” IEEE Trans. Power Electron., vol. 18, pp. 994-1001, 2003.
[52] S. Hansen, M. Malinowski, F. Blaabjerg and M. P. Kazmierkowski, “Sensorless Control strategies for PWM Rectifier,” in Proc. APEC, 2000, vol. 2, pp. 832-838.
[53] Y. Jiang, H. Mao, F. C. Lee and D. Borojevic, “Simple high performance three-phase boost rectifiers,” in Proc. PESC, 1994, vol. 2, pp. 1158-1163.
[54] R. Zhang, F. C. Lee and D. Boroyevich, “Four-legged three-phase PFC rectifier with fault tolerant capability,” in Proc. PESC, 2000, vol. 1, pp. 359-364.
[55] S. H. Li and C. M. Liaw, “Development of three-phase switch mode rectifier using
single-phase modules,” IEEE Trans. Aerosp. Electron. Syst., vol. 40, no. 1, pp. 70-79, 2004.
F. Three-Phase Inverters via Modular Connection
[56] R. J. Kakalec, “A comparison of three phase Scott-T and ferroresonant transformers,” in Proc. EEIC, 1995, pp. 619-623.
[57] N. P. Schibli, T. Nguyen and A. C. Rufer, “A three-phase multilevel converter for high-power induction motors,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 978-986, 1998.
[58] Z. Qianzhi, Z. Kai and W. Jugui, “A novel single-three phase inverter adopting CTA scheme,” in Proc. PEMC, 2000, vol. 2, pp. 980-984.
G. Isolated DC-Link
[59] G. Chryssis, High-Frequency Switching Power Supply, 2nd ed. New York: McGraw-Hill, 1989.
[60] A. I. Pressman, Switching Power Supply Design, 2nd ed. New York: McGraw-Hill, 1999.
[61] S. Arulselvi, C. Subashini and G. Uma, “A new push-pull zero voltage switching quasi-resonant converter: topology, analysis and experimentation,” in Proc. INDICON, 2005, pp. 482-486.
[62] Z. Yingqi and P. C. Sen, “A new ZVS phase-shifted PWM DC/DC converter with push-pull type synchronous rectifier,” in Proc. CCECE, 2003, vol. 1, pp. 395-398.
[63] D. Xu, C. Zhao and H. Fan, “A PWM plus phase-shift control bidirectional DC-DC converter,” IEEE Trans. Power Electron., vol. 19, pp. 666-675, 2004.
[64] H. Li, F. Z. Peng and J. S. Lawler, “A natural ZVS high-power bi-directional DC-DC converter with minimum number of devices,” in Proc. IAS, 2001, vol. 3, pp.1874-1881.
[65] M. Xu, Y. Ren, J. Zhou and F. C. Lee, ”1-MHz self-driven ZVS full-bridge converter for 48V power pod and DC/DC brick,” IEEE Trans. Power Electron., vol. 20, pp. 997-1006, 2005.
[66] S. Inoue and H. Akagi, ”A bidirectional isolated DC–DC converter as a core circuit of
the next-generation medium-voltage power conversion system,” IEEE Trans. Power. Electron., vol. 22, pp. 535-542, 2007.
[67] J. A. Claassens and I. W. Hofsajer, ”A flux balancer for phase shift ZVS DC-DC converters under transient conditions, ” in Proc. APEC, 2006, pp. 523-527.
[68] P. K. Jain, K. Wen, H. Soin and Y. Xi, ”Analysis and design considerations of a load and line independent zero voltage switching full bridge DC/DC converter topology, ” IEEE Trans. Power Electron., vol. 22, pp. 649-657, 2002.
[69] G. Koo, G. Moon and M. Youn, ”New zero-voltage-switching phase-shift full-bridge converter with low conduction losses, ” IEEE Trans. Ind. Electron., vol. 52, pp. 228-235, 2005.
[70] M. Ilic and D. Maksimovic, ”Phase-shifted full bridge DC-DC converter with energy recovery clamp and reduced circulating current, ” in Proc. APEC, 2007, pp. 969-975.
[71] K. Morimoto, T. Doi, H. Manabe, T. Ahmed, N. A. Ahmed, H. W. Lee and M. Nakaoka, ”Selective dual utility ac voltage link soft-switching PWM controlled DC-DC power converter with high frequency transformer for 36V-350A DC loads,” in Proc. PESC, 2005, pp. 1952-1958.
[72] W. Fan and G. Stojcic, ”Simple zero voltage switching full-bridge DC bus converters,” in Proc. APEC, 2005, vol. 3, pp. 1611-1617.
[73] F. Forest, E. Labouré, T. Meynard, and M. Arab, “Analytic design method based on homothetic shape of magnetic cores for high-frequency transformers,” IEEE Trans. Power Electron., vol. 22, pp. 2070-2080, 2007.
[74] M. H. Kheraluwala, D. W. Novotny and D. M. Divan, “Design considerations for high power high frequency transformers,” in Proc. PESC, 1990, pp. 734-742.
[75] W. G. Hurley, W. H. Wolfle and J. G. Breslin, “Optimized transformer design: inclusive of high-frequency effects,” IEEE Trans. Power Electron., vol. 13, pp. 651-659, 1998.
[76] R. Petkov, “Optimum design of a high-power, high-frequency transformer,” IEEE Trans. Power Electron., vol. 11, pp. 33-42, 1996.
H. Modular Multilevel Connection and Applications
[77] Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of
single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
[78] J. Rodriguez, J. S. Lai and F. Z. Peng, “Multilevel inverters: a survey of topologies, controls and applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724-738, August 2002.
[79] K. Fujii, U. Schwarzer, W. Rik and D. Doncker, “Comparsion of hard-switched multi-level inverter topologies for STATCOM by loss-implemented simulation and cost estimation,” in Proc. PESC, 2005, pp. 340-346.
[80] F. Chan and H. Calleja, “Reliability: A new approach in design of inverters for PV systems,” in Proc. CIEP, 2006, pp. 1-6.
I. Digital Control
[81] F. Nekoogar and G. Moriarty, Digital Control Using Digital Signal Processing, Prentice Hall PTR: New Jersey, 1999.
[82] F. L. Luo, H. Ye and M. H. Rashid, Digital Power Electronics and Applications, Academic Press Inc: London Ltd, 2005.
[83] L. H. S. C. Barreto, P. P. Praca, C. M. T. Cruz and R. T. Bascope, “PID digital control using microcontroller and FPGA applied to a single-phase three-level inverter,” in Proc. APEC, 2007, pp. 1443-1446.
[84] “Single-chip dsp-based high performance motor controller ADMC 401,” Analog Devices Inc., 2000.
[85] ‘‘Implementing PI controllers with the ADMC401,’’ Application Note AN401-13, Analog Devices Inc., 2000.
J. Standards
[86] P. Kulkarni, “Assessing power quality impacts and solutions for the California food processing industry,” EPRI, California, Tech, Rep, 100-98-001, EPRI Project #37, 2005.
[87] F. J. Hibbard, M. Z. Lowenstein, Available : http://www.transcoil.com/meetieee.pdf
[88] F. Martin, Available : http://www.ce-mag.com/99ARG/Martin103.html
[89] K. Armstrong, “Limits for harmonic current emissions (equipment input current up to and including 16A per phase),” REO UK LTD.
K. Others
[90] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
[91] AMOTECH Cut-cores for High Power Applications Data Manual, Advance Material on Technology Co., Korea, 2005.
[92] Advance Powder Core for High Current PFC/Out Put Choke Application Data Manual, Amosense Co., Korea, 2005.
[93] J. Y. Chai, R. J. Chen and C. M. Liaw, “On a SRM with three-phase PFC front-end and its control,” R.O.C. Symposium on Electrical Power Engineering, pp. D06.3-1-D06.3-5, 2007.