簡易檢索 / 詳目顯示

研究生: 許智祐
Syu, Jhih-You
論文名稱: 微分階化餘代數上的霍赫希爾德上同調
Hochschild cohomology of differential graded coalgebras
指導教授: 廖軒毅
Liao, Hsuan-Yi
口試委員: 鄭志豪
Teh, Jyh-Haur
賴俊儒
Lai, Chun-Ju
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 43
中文關鍵詞: 霍赫希爾德上同調微分階化餘代數微分階化代數微分階化李代數導子
外文關鍵詞: Hochschild cohomology, differential graded algebra, differential graded coalgebra, differential graded Lie algebra, derivations
相關次數: 點閱:38下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文裡,對於任何一個微分階化餘代數C,我們在他的霍赫希爾德上同調上構造了微分階化代數以及微分階化李代數的結構。並且我們調查了這個霍赫希爾德上同調跟餘代數C的位移代數C[-1]的張量代數T(C[-1])的導子空間的關係。


    In this thesis, we construct DG (i.e., differential graded) algebra structures and DG Lie algebra structures on the Hochschild cochain complexes of any DG coalgebra C. We investigate the relationship between the Hochschild cochain complexes of C and the space Der(T(C[−1])) of derivations of the tensor algebra T(C[−1]) of C[−1].

    Acknowledgements i Abstract (Chinese version) ii Abstract iii Introduction 1 Notations and conventions 4 1. Preliminaries 5 1.1. Graded vector spaces 5 1.2. Differential graded (co)algebras 6 1.3. Degree-shifting map 8 2. Hochschild cochain complexes of DG coalgebras and their cohomology 9 2.1. Hochschild cochain complex of graded coalgebras 10 2.2. Hochschild cochain complex of DG coalgebras 15 2.3. Hochschild cochain product-total complex and shifted Hochschild complexes 21 3. DG Lie structure induced by derivations 24 3.1. Derivations of graded algebras and their relation to DG Lie algebras 24 3.2. Derivations of tensor algebras 25 3.3. Shifted DG coalgebras 26 3.4. Relationship between Hochschild cochain complexes and derivations 29 3.5. Hochschild cochain complex as a DG Lie algebra 33 4. DG algebra structure on Hochschild cochain complexes 34 4.1. The DG algebra structure on Hochschild cochain complexes 34 4.2. The DG algebra structure on the shifted derivation space 39 4.3. Comparison 42 References 43

    1. Vyjayanthi Chari and Andrew Pressley, A guide to quantum groups , Cambridge University Press, Cambridge, 1995, Corrected reprint of the 1994 original. MR 1358358
    2. Sorin Dăscălescu, Constantin Năstăsescu, and Şerban Raianu, Hopf algebras , Monographs and Textbooks in Pure and Applied Mathematics, vol. 235, Marcel Dekker, Inc., New York, 2001, An introduction. MR 1786197
    3. Murray Gerstenhaber, The cohomology structure of an associative ring , Ann. of Math. (2) 78 (1963), 267–288. MR 161898
    4. Ezra Getzler, Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology , Quantum deformations of algebras and their representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), Israel Math. Conf. Proc., vol. 7, Bar-Ilan Univ., Ramat Gan, 1993, pp. 65–78. MR 1261901
    5. Allen Hatcher, Algebraic topology , Cambridge University Press, Cambridge, 2002. MR 1867354
    6. Bernhard Keller, A remark on Hochschild cohomology and Koszul duality , Advances in representation theory of algebras, Contemp. Math., vol. 761, Amer. Math. Soc., [Providence], RI, [2021] ©2021, pp. 131–136. MR 4237031
    7. Hsuan-Yi Liao and Seokbong Seol, Keller admissible triples and Dufl o theorem , J. Math. Pures Appl. (9) 174 (2023), 1–43. MR 4584414
    8. Wendy Lowen and Michel Van den Bergh, The b ∞-structure on the derived endomorphism algebra of the unit in a monoidal category , 2019.
    9. Marco Manetti, Lie methods in deformation theory , Springer Monographs in Mathematics, Springer, Singapore, [2022] ©2022. MR 4485797
    10. Loring W. Tu, An introduction to manifolds , Universitext, Springer, New York, 2008. MR 2356311

    QR CODE