研究生: |
何明析 Ming-Shi Ho |
---|---|
論文名稱: |
獨立運轉固態氧化物燃料電池/微渦輪機混成發電系統之概念設計 Conceptual Design of Stand-Alone Solid Oxide Fuel Cell / Micro Gas Turbine Hybrid System |
指導教授: |
潘欽
Chin Pan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 固態氧化物燃料電池 、內重整 、混成系統 、微渦輪機 、GCTool |
外文關鍵詞: | Solid Oxide Fuel Cell, internal reforming, hybrid system, micro gas turbine, GCTool |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我國缺乏自產能源,超過98%的能源由國外進口。為了提高能源使用效率,節約能源並減少二氧化碳排放相關議題就變得非常重要。固態氧化物燃料電池與微渦輪機混成發電系統具有70%以上之系統效率的潛能,遠比現有的火力發電或核能發電的效率高出許多。本研究目的即在發展獨立運轉式固態氧化物燃料電池與氣渦輪機混成發電系統之熱力學模式,並利用FORTRAN程式語言進行分析評估置。
模式建立初期,首先針對SOFC BOP R3.2.2系統進行分析,並與核能研究所的GCTool分析結果作比較。為尋求最佳系統發電效率,本研究分析的SOFC/MGT系統配置包括有: (1)標準型SOFC/MGT系統、(2) 二次預熱SOFC/MGT系統、(3)陽極回收SOFC/MGT系統、(4) 雙級式SOFC/MGT系統、(5) 雙級式陽極回收SOFC/MGT系統等五種案例分析,並分析比較各案例之最佳系統電效率。
研究結果顯示,SOFC BOP R3.2.2系統效率與GCTool僅0.6%的差距,導致此差距的原因可能是GCTool未能提供計算重整反應之化學平衡常數,使得外重整器出口成份有差異。
本研究提出雙級式陽極回收SOFC/MGT系統規劃,整合二次預熱、陽極回收、雙級式SOFC之各項優點。其中,二次預熱的概念是將燃料及空氣經後燃器二次預熱,使得後燃器不需額外增加燃料,有效地提升系統電效率。陽極回型SOFC把陽極出口氣體一並導回入口,增加燃料氣體分壓及減少所需之水蒸汽量,提高SOFC發電效率。而雙級式設計概念是將兩個SOFC進行串接,利用電化學產生的熱能,提昇後燃器入口溫度,提高MGT輸出電功率,而且所需空氣質量流率減少,空氣壓縮機所需輸入電功下降。分析得知,本系統最大電效率為64.5%,較其它各案例都高。
[1] “Fuel Cell Handbook 7th”, EG&G Technical services Inc., Energy Technology Laboratory ,( 2004)
[2] 黃鎮江,”燃料電池”,華科技圖書股份有限公司,(2003)
[3] B. Thorud, “Dynamic modeling and characterization of a solid oxide fuel cell integrated in a gas turbine cycle”, Doctor thesis, Norwegian University of Science and Technology, (2005)
[4] S. C. Singhal, K. kendall, “High temperature SOFC”, Elsevier Inc, 360 Park Avenus South, New York,(2003)
[5] J. Larmine, A. Dicks, “Fuel Cell Systems Explained”, 2rd, John Wiley & Sons Ltd, England, (2003)
[6] E. Achenbach, “Three-Dimensional and Time Dependent Simulation of a Planar Solid Oxide Fuel Cell Stack ”, Journal of Power Sources, vol.49, pp.333-348, (1994)
[7] S.H. Chan, Z.T. Xia, “polarization effects in electrolyte/electrode- supported SOFC”, Journal of Applied Electrochemistry, vol.132, pp.339-347, (2002)
[8] D. A. Noren, M.A. Hoffman, “Clarifying the Butler-Volmer equation and relate appromixmation for calculating activation losses in solid oxide fuel cell mdels”, Journal of Power Sources, vol. 152, pp.175-181, (2005)
[9] P. Aguiar, C.S. Adjiman, N. P. Brandon, “Anode supported intermediate temperature direct internal reforming solid oxide fuel cell. Ⅰ: model –based steady-state performance”, Journal of Power Sources, vol. 138, pp120-136, (2004)
[10] F. Zhao, A.V. Virkar, “Dependence of polarization in anode supported solid oxide fuel cells on various cell parameters”, Journal of Power Sources, vol.141, pp79-95, (2005)
[11] R. Suwanwarangkul, E. Croiset, M.W. Fowler, P.L. Douglas, E. Entchev, M.A. Douglas, “Performance comparison of Fick’s, dusty-gas and Stefan-Maxwell models to predict the concentration overpotential of a SOFC anode”, Journal Power Sources, vol.122, pp.9-18, (2003)
[12] P. Costamagna, A. Selimovic, M. Del Borghi, G. Agnew, “Electrochemical model of the integrated planar SOFC ”, Chemical Engineering Journal, Vol.102, pp. 61-69, (2004)
[13] S. Campanari, P. Iora, “Definition and sensitivity analysis of a finite volume SOFC model for tubular cell geometry”, Journal of Power Sources, vol.132, pp.113-126, (2004)
[14] 陳中生、邱耀平、曾錦清、周世同、陳孝輝,”平板狀SOFC電池元件之建立及模擬”,INER-2495,核能研究所,中華民國九十三年十月。
[15] K. Nishida, T. Takage, S. Kinoshita, T. Tsuji, “Performance evaluation of multi-stage SOFC and gas turbine combined systems”, in: Proceeding of ASME TURBO EXPO 2002, Amsterdam, The Netherlands, June 3-6 (2002)
[16] K. Onda, T. Iwanari, N. Miyauchi, K. Ito, T. Ohba, Y. Sakaki, S. Nagta,“Cycle analysis of combined power generation by planar SOFC and gas turbine considering cell temperature and current density distributions”,Journal of Electrochemical Society, vol.150(12), pp.A1569-A1576, (2003)
[17] H. Yoshizumi, K. Takeishi, S. Kinoshita, “SOFC/MGT using Cheng cycle for high efficiency micro-cogeneration systems”, in: Proceeding of ISTP-16, PRAGUE, Czech Republic, (2005)
[18] T. Araki, T. ohba, T. Ohba, S. Takezawa, K. Onda, Y. Sakaki, “Cycle analysis of planar SOFC power generation with serial connection of low and high temperature SOFCs.”, Journal of Power Sources, vol. 158, pp.52-59. (2006)
[19] 洪文堂、蔡禹擎、吳思翰、邱耀平,“固態氧化物燃料電池BOP之 規畫及熱氣測試平台之建置”,第二十二屆機械工程研討會,中華民國九十四年十一月。
[20] H. Uechi, S. Kimijima and N. Kasagi, “Cycle analysis of gas turbine – fuel cell cycle hybrid micro generation system”, Journal of Engineering for Gas Turbine and Power, vol.26, pp755-762, (2004)
[21] A. F. Marssardo, F. Lubelli, “Internal reforming SOFC gas turbine combined cycles: Part A cell model and cycle thermodynamic analysis”, Journal of Engineering for Gas Turbine and Power, ASME, vol.122 pp.27-35, (2000)
[22] S.H. Chan, H.K. Ho and Y.Tian, “Multi level modeling of SOFC gas turbine hybrid system”, Journal of Hydrogen Energy, vol.28, pp.889-900, (2003)
[23] C. Stiller, B. Thorud, S. Seljebo, O. Mathisen, H. Karoliussen, O. Bolland,“Finite-volume modeling and hybrid-cycle performance of planar and tubular solid oxide fuel cells”, Journal of Power Sources, vol. 141, pp.227-240, (2005)
[24] GCTool Version 2.4 Relase Data: July, ANL,( 2001)
[25] H. Yakabe, T. Sakurai, “3D simulation of current path in planar SOFCs”, Solid State Ionics , vol.174, pp.295-302, (2004)
[26] S.H. Chan, K.A. Khor, Z.T. Xia, ”A complete polarization model of a solid fuel cell and its sensitivity to the change of cell component thickness”, Journal of Power Sources, vol. 93, pp.130-140, (2001)
[27] R. C. Reid, J. M. Prausnitz and B. E. Poling, “The Properties of Gases and Liquiads”, 4th ed., McGraw-Hill, New York, 1987.
[28] T.K. Sherwood, R.L. Pigford , C.R. Wilke, “Mass Transfer”, McGRAW-HILL Inc., Taipei, Taiwan, (1987)
[29] H.Yakabe, M. Hishinuma, M. Uratani, Y. Matsuzaki, I. Yassuda, “Evalution and modeling of performance of anode supported SOFC”, Journal of power sources, vol.86, pp.423-431, (2000)
[30] A.F. Mills, “Heat Transfer”, 2rd, Prentic Hall, Inc., (1999)
[31] J. Pållson, “Thermodynamic modeling and performance of combined solid oxide fuel cell and gas turbine systems”, Doctoral Thesis, Lund University, ISSN 0282-1990, (2002)
[32] F. Calise, A. Palombo, L. Vanoli, “Design and partial load exergy analysis of hybrid SOFC-GT power plant”, Journal of Power Sources , vol. 158, pp.225-244, (2006)
[33] P. Kuchonthara, Sankar Bhattacharya A. Tsutsumi, “Energy recuperation in solid oxide fuel cell and gas turbine combined system”, Journal of Power Sources, vol. 117, pp.7-13 (2003)
[34] S.H. Chan, H.K. Ho and Y.Tian,“Modeling of simple hybrid solid oxide fuel cell and gas turbine power plant”, Journal of Power Sources, vol.109, pp. 111-120, 2002
[35] B. Chachuat, A. Mitsos, P. I. Barton, “Optimal design and steady state operation of micro power generation employing fuel cells ”, Chemical Engineering Science, vol60, pp.4535-4556, (2005)
[36] S. Campanari, P. Iora, “Definition and sensitivity analysis of a finite volume SOFC model for tubular cell geometry”, Journal of Power Sources, vol.132, pp.113-126, (2004)
[37] D. E. Darrell, M. S. Wrighton., “ General Chemistry”, Houghton Mifflin Co, (1984)
[38] L. Magistri, R. Bozzo, P. Costamagna, A.F. Massardo,“Simplified versus detailed solid oxide fuel cell reactor models and influence on the simulation of the design ”, Journal of Engineering for Gas Turbine and Power, vol.126, pp.516-523, (2004)