簡易檢索 / 詳目顯示

研究生: 洪仕偉
Shih-Wei Hung
論文名稱: 以分子動力學模擬自組裝單分子膜之表面特性
指導教授: 錢景常
Ching-Chang Chieng
曾繁根
Fang-Gang Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 86
中文關鍵詞: 分子動力學自組裝單分子膜濕潤現象蛋白質吸附表面特性
外文關鍵詞: molecular dynamics, self-assembled monolayer, wetting phenomena, protein adsorption, surface properties
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自組裝單分子膜為有機分子吸附於底材表面所構成,因此藉
    由改變有機分子成分,便可輕易地控制表面特性。所以在微機電
    技術上,自組裝單分子膜的應用相當廣泛,如微流體的輸送與增
    加蛋白質檢測效率等。進一步了解自組裝單分子膜的物理機制,
    將有助於應用上的設計。表面特性是因物體與表面間分子作用所
    造成的,而分子動力學主要所探討的便是分子間的作用。所以在
    表面特性的研究上,分子動力學模擬便成了極為有力的工具。
    此研究使用了分子動力學模擬,探討了在混合不同種類有機
    分子之自組裝單分子膜的表面現象。主要可分為兩部分:第一部
    分探討混合自組裝單分子膜表面的濕潤現象,以助於微流體輸送
    上的應用;第二部分則探討蛋白質與混合自組裝單分子膜間的吸
    附現象,以作為生物晶片設計上的參考。第一部分以接觸角來決
    定表面濕潤程度。目前初步發現,接觸角皆會因混合比例不同而
    造成差異,但在混合不同鏈長的表面,其差異並不明顯;而在混
    合不同官能基的表面,則有著顯著的差異,其原因應為OH基與水
    分子間產生氫鍵所造成。未來希望能藉由計算表面張力,進一步
    對表面的濕潤現象作量化分析。第二部分利用計算蛋白質與表面
    分子間的束縛能,作為決定其吸附程度的依據。初步發現其之間
    束縛能會因混合比例產生變化,至於更詳細的探討,仍待未來建
    立更詳細的系統(考慮水分子的效應)才能確定。


    The self-assembled monolayers (SAMs) provide viable means of controlling both physical and chemical properties of a solid surface. This work intends to extend the applicaiton to microfluidic system and protein sensing by molecular dynamics. Molecular dynamics (MD) simulations is a well established tool to understand the properties of complex molecular system, which is a very fundamental method to describe physics in molecular size, especially for the intermolecular interactions.
    Two model systems are studied: (1)Wetting phenomena of alkanethiol SAMs and their mixture on Au(111) surface; (2)Binding strength and orientations of protein (e.g., E6) on SAMs with different chain length. The simulations of the first system show that the modification of terminal group to OH is very effective for the increase of hydrophilic degree. The simulations of the second system show that
    the binding energy between protein and SAMs are varied with the mixed ratio of SAMs and orientations. Further studies on the full system (including water molecules) will be performed to confirm the observations.

    一緒論. . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . 2 1.3 研究目標. . . . . . . . . . . . . . . . . . . . . . . 13 二分子動力學理論. . . . . . . . . . . . . . . . . . . . . 16 2.1 運動方程式. . . . . . . . . . . . . . . . . . . . . . 16 2.2 勢能函式. . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Lennard-Jones勢能函式. . . . . . . . . . . . . . . .17 2.2.2 水分子模型. . . . . . . . . . . . . . . . . . . . . 18 2.2.3 OPLS模型. . . . . . . . . . . . . . . . . . . . . . 19 2.2.4 金(111)表面化學吸附勢能函式. . . . . . . . . . . . .20 2.3 積分方法. . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Verlet算則. . . . . . . . . . . . . . . . . . . . . 21 2.3.2 leap-frog算則. . . . . . . . . . . . . . . . . . . .22 2.3.3 velocity Verlet算則. . . . . . . . . . . . . . . . .23 2.3.4 Beeman算則. . . . . . . . . . . . . . . . . . . . . 24 2.4 初始條件. . . . . . . . . . . . . . . . . . . . . . . 24 2.4.1 初始位置. . . . . . . . . . . . . . . . . . . . . . 24 2.4.2 初始速度. . . . . . . . . . . . . . . . . . . . . . 25 2.5 邊界條件. . . . . . . . . . . . . . . . . . . . . . . 25 2.5.1 周期性邊界條件. . . . . . . . . . . . . . . . . . . 25 2.5.2 鏡像邊界條件. . . . . . . . . . . . . . . . . . . . 27 2.6 限制動力學. . . . . . . . . . . . . . . . . . . . . . 27 2.6.1 SHAKE法. . . . . . . . . . . . . . . . . . . . . . .28 2.6.2 RATTLE法. . . . . . . . . . . . . . . . . . . . . . 29 2.7 溫控方法. . . . . . . . . . . . . . . . . . . . . . . 29 2.7.1 velocity scaling . . . . . . . . . . . . . . . . . .30 2.7.2 Nos´e-Hoover . . . . . . . . . . . . . . . . . . . 30 2.8 列表方法. . . . . . . . . . . . . . . . . . . . . . . 31 2.8.1 鄰近列表(neighbor list)法. . . . . . . . . . . . . .32 2.8.2 單元連接(cell link)法. . . . . . . . . . . . . . . .32 2.9 表面張力. . . . . . . . . . . . . . . . . . . . . . . 34 2.9.1 表面張力定義-類熱力學(Quasi-thermodynamics) . . . . 34 2.9.2 壓力張量. . . . . . . . . . . . . . . . . . . . . . 36 2.10 溶劑模型. . . . . . . . . . . . . . . . . . . . . . .39 2.10.1 原始模型(Primitive Model) . . . . . . . . . . . . .39 2.10.2 等效介電常數(Effective Dielectric Constant) . . . .40 2.10.3 反應場(Reaction Field) . . . . . . . . . . . . . . 41 2.10.4 Langevin偶極(Langevin Dipole) . . . . . . . . . . .42 2.10.5 隨機動力學(Stochastic Dynamics) . . . . . . . . . .43 2.10.6 明確溶劑(Explicit Solvent)模型. . . . . . . . . . .44 2.10.7 極化(Polarizability)模型. . . . . . . . . . . . . .45 三結果 . . . . . . . . . . . . . . . . . . . . . . . . . .47 3.1 混合SAMs之濕潤現象模擬. . . . . . . . . . . . . . . . 47 3.1.1 模擬方法. . . . . . . . . . . . . . . . . . . . . . 48 3.1.2 結果. . . . . . . . . . . . . . . . . . . . . . . . 49 3.1.3 表面張力計算測試. . . . . . . . . . . . . . . . . . 57 3.2 E6蛋白質與混合SAMs之結合現象模擬. . . . . . . . . . . 60 3.2.1 模擬方法. . . . . . . . . . . . . . . . . . . . . . 64 3.2.2 結果. . . . . . . . . . . . . . . . . . . . . . . . 66 四結論. . . . . . . . . . . . . . . . . . . . . . . . . . 76 五未來展望 . . . . . . . . . . . . . . . . . . . . . . . .78

    [1] J. Hautman, and M. L. Klein, ”Simulation of a monolayer of alkyl thoil chains”, J. Chem. Phys., 91(1989),4994.
    [2] J. Hautman, and M. L. Klein, ”Molecular dynamics simulation of the effects of temperature on a dense monolayer of long-chain molecules”, J. Chem. Phys., 93(1990),7483.
    [3] J. Hautman, J. P. Bareman, W. Mar and M. L. Klein, ”Molecular dynamics investigations of self-assembled monolayers”, J. Chem. Soc. Faraday Trans., 87(1991),2031.
    [4] K. J. Tupper and D. W. Brenner, ”Compression-induced structural transition in a self-assembled monolayer”, Langmuir, 10(1994),2335.
    [5] J. P. Ryckaert, and A. Bellemans, ”Molecular dynamics of liquid alkanes”, J. Chem. Soc. Faraday Trans., 66(1978),95.
    [6] W. Mar, and M. L. Klein, ”Molecular dynamics study of the self-assembled monolayer composed of S(CH2)14CH3 molecules using an all-atoms model”, Langmuir, 10 1994),188.
    [7] J. N. Glosli, and G. M. McClelland, ”Molecular dynamics
    study of sliding friction of ordered organic monolayers”, Phys. Rev. Lett., 70(1993),17055.
    [8] L. Zhang, R. Balasundaram, S. H. Gehrke, and S. Jiang,
    ”Nonequilibrium molecular dynamics simulations of confined
    fluids in contact with the bulk”, J. Chem. Phys., 114(2001),6869.
    [9] L. Zhang, and S. Jiang, ”Molecular simulation study of
    nanoscale friction for alkyl monolayers on Si(111)”, J. Chem. Phys., 117(2002),1804.
    [10] L. Zhang, and S. Jiang, ”Molecular simulation study of
    nanoscale friction between alkyl monolayers on Si(111) immersed in solvents”, J. Chem. Phys., 119(2003),765.
    [11] T. Ohzono, and M. Fujihira, ”Molecular dynamics simulations of friction betwenn an ordered organic monolayer and a rigid slider with an atomic-scale protuberance”, Phys. Rev. B, 62(2000),1960.
    [12] L. Zhang, Y. Leng, and S. Jiang, ”Tip-based hybrid simulation study of frictional properties of self-assembled monolayers: effects of chain length, terminal group, scan direction, and scan velocity”, Langmuir, 19(2003),9742.
    [13] J. Hautman, and M. L. Klein, ”Microscopic wetting phenomena”, Phys. Rev. Lett. 67(1991),1763.
    [14] M. Sprik, E. Delamarche, B. Michel, U. Rぴothlisberger, M. L. Klein, H. Wolf and H. Ringsdorf, ”Structure of hydrophilic self-assembled monolayers: a combined scanning tunneling microscopy and computer simulation study”, Langmuir, 10(1994),4116.
    [15] Q. Zhang, J. Zheng, A. Shevade, L. Zhang, S. H. Gehrke,
    G. S. Heffelfinger and S. Jiang, ”Transport diffusion of liquid water and methanol through membranes”, J. Chem. Phys., 117(2002),808.
    [16] J. P. R. B. Walton, D. J. Tildesley, and J. S. Rowlinson, ”The pressure tensor at the planar surface of a liquid”, Mol. Phys., 48(1983),1357.
    [17] M. J. P. Nijmeijer, C. Bruin, and A. F. Bakker, ”Wetting and drying of an inert wall by a fluid in a molecular-dynamics simiulation”,Phys. Rev. A, 42(1990),6052.
    [18] F. Varnik, J. Baschnagel, and K. Binder, ”Molecular dynamics results on the pressure tensor of polymer films”, J. Chem. Phys., 113(2000),4444.
    [19] A. Milchev, A. Milchev, and K. Binder, ”Nanodroplets on a solid plane: wetting and spreading in a Monte Carlo simulation”, Comp. Phys. Comm., 146(2002),38.
    [20] M. Tarek, K. Tu, M. L. Klein, and D. J. Tobias, ”Molecular dynamics simulation of supported phospholipid/alkanethiol bilayers on a Gold(111) surface”, Biophys. J., 77(1999),964.
    [21] J. Zheng, L. Li, S. Chen, and S. Jiang, ”Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers”, Langmuir, 20(2004),8931.
    [22] J. E. Lennard-Jones, ”The determination of molecular fields. I. From the variation of the viscosity of a gas with temperature” Proc. Roy. Soc. (Lond.), 106A(1924),441.
    [23] F. London, ”Properies and applications of molecular forces”, Zeit. Physik. Chem. B, 11(1930),222.
    [24] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, in ”Intermolecular Forces”, edited by B. Pullman (Reidel, Dordrecht, 1981)
    [25] W. L. Jorgensen, J. M. Briggs, and M. L. Contreras, ”Relative partition coefficients for organic solutes from fluid simulations”, J. Phys. Chem., 94(1990),1683.
    [26] L. Verlet, ”Computer experiments on classical fluids: I. Thermodynamical properties of Lennard-Jones molecules”, Phys. Rev., 159(1967),98.
    [27] M. P. Allen, and D. J. Tildesley, ”Computer simulations of liquids”, (Clarendon Press, Oxford, 1987)
    [28] D. Beeman, ”Some multistep methods for use in molecular dynamics calculations”, J. Comput. Phys., 20(1976),130.
    [29] J. M. Haile, ”Molecular dynamics simulation: elementary methods”, (Wiley, 1992)
    [30] J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, ”Numeriacal integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes”, J. Comput. Phys., 23(1977),327.
    [31] H. C. Andersen, ”RATTLE: a velocity version of the SHAKE algorithm for molecular dynamics calculations”, J. Comput. Phys., 52(1983),24.
    [32] S. Nos´e, ”A unified formulation of the constant temperature molecular dynamics methods”, J. Chem. Phys., 81(1984),511.
    [33] W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions”, Phys. Rev. A, 31(1985),1695.
    [34] R. W. Hockney, S. P. Goel, and J. W. Eastwood, ”Quiet
    high-resolution computer model of a plasma”, J. Comp. Phys., 14(1974),148.
    [35] J. S. Rowlinson and B. Windom, ”Molecular theory of capillarity”, (Clarendon, Oxford, 1982)
    [36] J. H. Irving and J. G. Kirkwood, ”The statistical mechanical theory of transport processes. IV. Then equation of hydrodynamics”, J. Phys. Chem., 18(1950),817.
    [37] P. E. Smith and B. M. Pettitt, ”Modeling solvent in biomolecular systems”, J. Phys. Chem., 98(1994),9700.
    [38] L. Onsager, ”Electric moments of molecules in liquid”, J. Am. Chem. Soc., 58(1936),1486.
    [39] A. Warshel and M. Levitt, ”Theoretical studies of enzymic reactions - dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme”, J. Mol. Biol., 103(1976),227.
    [40] 清華大學微機電所曾元泰實驗結果(2004)
    [41] W. N. Huang, S. C. Sue, D. S. Wang, P. L. Wu, and W. G.
    Wu, ”Peripheral binding mode and penetration depth of cobra
    cardiotoxin on phospholipid membranes as studied by a combined FTIR and computer simulation approach”, Biochemistry, 42(2003),7457.
    [42] R. G. Efremov, P. E. Volynsky, D. E. Nolde, P. V.
    Dubovskii, and A. S. Arseniev, ”Interaction of cardiotoxins
    with membranes: A molecular modeling study”, Biophys. J.,
    83(2002),144.
    [43] T. Lazaridis, ”Implicit solvent simulations of peptide interactions with anionic lipid membranes”, Proteins, 58(2005),518.
    [44] http://robetta.bakerlab.org/
    [45] K. T. Simons, C. Kooperberg, E. Huang, and D. Baker, ”Assembly of protein tertiary structures from fragments with similar local sequences using simulate anealing and Bayesian scoring functions”, J. Mol. Biol., 268(1997),209.
    [46] F. S. Lee, Z. T. Chu, and A. Warshel, ”Microscopic and
    semimicroscopic calculations of electrostatic energies in proteins by the POLARIS and ENZYMIX programs”, J. Comp.
    Chem., 14(1993),161.
    [47] J. Ramstein and R. Lavery, ”Energetic coupling between DNA bending and abse pair opening”, Proc. Natl. Acad. Sci. USA, 85(1988),7231.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE