簡易檢索 / 詳目顯示

研究生: 呂英嘉
Ying-Jia Lu
論文名稱: 次微米級玻璃結構直接壓印成型之理論分析與實驗研究
Theoretical and Experimental Study on Formation of Glass Micron Structures by Using Imprinting Process
指導教授: 宋震國
Cheng-Kuo Sung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 155
中文關鍵詞: 玻璃成型奈米壓印實驗機台製程模擬有限元素法
外文關鍵詞: Glass forming, Nanoimprint, Experimental setup, Process simulation, Finite element method
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 玻璃材料比高分子有更好的光學特性及生物親和性,而熱壓印製程是一種可大量複製與量產的技術,若能有系統地由加工模型的建立與模擬,掌握玻璃熱壓的加工條件,配合設備的設計進行相關的實驗,是一個極具發展潛力的議題。
    本文利用ANSYS Multiphysics 10.0建立玻璃壓印模型,以假設玻璃為牛頓流體出發,根據流體之壓力場、速度場分佈,以解釋壓印參數對於玻璃熱直壓之成型影響,如模具下壓速度、壓印溫度、模具之尺寸效應、基材效應、玻璃填充形狀等,並討論其成型機制,配合實驗結果與模擬相互討論。文中並針對玻璃熱壓實驗結果,對模具以及玻璃材料選擇上提出建議,且在低溫625 K加工條件下,配合所建立之實驗機台,成功地在玻璃上壓製出最小節距為291.3 nm、成型高度為138.3 nm之圖案,且在其適當壓印參數下具有高度之重現性。


    Glass possesses better optical characteristics and bio-compatibility than most polymeric materials. Besides, the nanoimprinting process is considered to be areproducible and mass production technique. In this study , ANSYS Multiphysics 10.0 is employed to build the simulation model for glass imprinting process. Assuming glass is a Newtonian fluid as it is over glass transition temperature, the simulation investigates the influences of parameters on the formability of glass imprinting such as the imprinting velocity, working temperature, the size effect of the mold, substrate effect and filling geometric forms. According to the experimental and simulation results , the glass forming mechanism by imprinting process is identified and the material, geometry, and process parameters are recommend. This study successfullydirect imprint nano/micro patterns on the glass substrate; the pitch size is minimized to 293.1 nm and the formation height 138.3 nm at the temperature 625 K. The repeatability od the process is proved to be stable by employing the designed imprinting machine and process parameters.

    摘要 1 Abstract 2 致謝 3 目錄 4 圖目錄 7 表目錄 13 符號表 14 參考文獻 153 第一章 緒論 15 1-1 前言 15 1-2 研究動機 17 1-3 文獻回顧 18 1-3-1 奈米壓印微影技術 18 1-3-2 玻璃壓印技術 21 1-3-4 玻璃壓印技術應用 27 1-4 本文內容 32 第二章 材料性質與相關模擬理論 33 2-1 玻璃性質 34 2-2 玻璃成型機制 40 2-3 不可壓縮黏流流體方程式 42 2-4 牛頓流體有限元素方程式推導 44 第三章 玻璃壓印模型與模擬討論 50 3-1 熱壓模擬文獻 51 3-2 玻璃壓印模擬模型 53 3-2-1 模擬參數 56 3-2-2 模型之邊界條件假設 58 3-2-3 收斂性分析 59 3-3 玻璃成型機制 61 3-3-1 模具下壓速度與模具受壓力之玻璃成型行為 61 3-4 溫度效應 73 3-5 模具之尺寸效應 75 3-6 模具之穴寬節距比對成型之影響 79 3-7 基材效應 82 3-8 玻璃填充形狀 91 第四章 玻璃壓印實驗製程 97 4-1 微米模具設計 97 4-1-2 微米模具製作流程 100 4-1-3 奈米模具設計 101 4-1-4 奈米模具製作流程 103 4-2 熱壓型壓印設備探討 103 4-3 實驗壓印設備備製 106 4-4 實驗流程 110 4-4-1 實驗溫度與壓力時序 112 4-4-2 實驗各材料配置位置 113 4-5 保溫時間探討 114 4-4 實驗材料性質 117 第五章 玻璃壓印實驗結果及討論 119 5-1溫度效應對成型之影響 119 5-2 微米尺度玻璃熱直壓實驗結果 122 5-2-1微米玻璃顯微結構與結果討論 123 5-3 奈米尺度玻璃熱直壓實驗結果 127 5-4玻璃熱直壓實驗與模擬結果討論 133 5-5 玻璃熱直壓之模具沾黏與脫模討論 142 第六章 結論與未來工作 149 6-1結論 151 6-2未來工作 152

    [1] C K Sung, ”Fabrication of Subwavelength Metallic Structures by Using A Metal Direct Imprinting Process,” National Tsing Hua
    University, 2007
    [2] Katustoshi Tanaka, “Status Quo Prospect of Ultraprecision
    Machining,” 溶接學會誌, Vol. 2, 2001
    [3] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstorm,
    “Nanoimprint lithography,” J. Vac. Sci. Technol. B14(6), 1996
    [4] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi,
    M.Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G.
    Wilson, “Step and Flash Imprint Lithography: A New Approach to
    High-Resolution Patterning”, 1999
    [5] Stephen Y. Chou, Chirs Keimel and Jian Gu, “Ultrafast and Direct
    Imprint of Nanostructures in Silicon,” Nature, Vol. 417, 2002
    [6] Y. Hirai, Kazuyuki Yao, K. Kanajugi, “Fine Pattern Fabrication on
    Glass Surface by Imprint Lithography,” 2003
    [7] Takehiko Yamaguchi, Kazuyuki Yao, Tomohiro Kanajugi,
    ”Fabrication of Micro Optical Elements on Glass Surface by Imprint Lithography,” 2003
    [8] Yasunori Saotome, Kenichi Imai, Narihito Sawanobori,
    “Microformability of Optical Flasses for Precision Molding,” J. of
    Materials Proc. Techno. Vol. 140, 2003, pp. 379-384
    [9] Masaharu Takahashi, Kohichi Sugimoto and Ryutaro Maeda,
    “Nanoimprint of Glass Materials with Glassy Carbon Molds
    Fabricated by Focused Ion Beam Etching,” Japanese Journal of
    Applied Physics, Vol. 44, No. 7B, 2005
    [10] M.Cheng, S.H.Zhang, J.A.Wert, ”Finite Element Analysis of
    Microimprinting of Bulk Metallic Glasses in Supercooled
    Liquid Regime,” 2007
    [11] Hiromichi Takebe,Makoto Kuwabara, Masaharu Komori, ”Imprinted Optical Pattern of Low-Softening Phosphate Glass,” 2007
    [12] T. Mori, K. Hasegawa, T. Hatano, ”Surface-relief Gratings with High Spatial Frequency Fabricated Using Direct Glass Imprinting Process,” 2008
    [13] Junji Nishii, “Nano-glass Imprinting Technology for Next Generation Optical Devices,” 2008
    [14] Yasunori Saotome, Kazuo Itoh, Tao Zhang, ”Superplastic
    Nanoforming of Pd-Based Amorphous Alloy,” 2000
    [15] Yasunori Saotome, Kenichi Imai, Shigeo Shioda, Susumu Shimizu,
    Tao Zhang, Akihisa Inoue, “The Micro Nanoformability of Pt-Based
    Metallic Glass and The Nanoforming of Three Dimensional Structure,” Intermetallics, Vol. 10, 2002, pp. 1241-1247
    [16]陳貽瑞, 王建, ”基礎材料與新材料,” 中國天津大學出版社, 1993
    [17]千福熹, ”現代玻璃科學科技,” 上海科學技術出版社(上冊), 1988
    [18] Horst Scholze, “Glass-Nature, Structure and Properties,”
    Springer-Verlag, 1990
    [19] William D. Callister, Jr, “Materials Science and Engineering an
    Introduction,” Wiley International Edition, 2003
    [20] Pau Chang Lu, “Introduction to The Mechanics of Viscous Fluids”,
    1973 John D. Anderson, JR., “Computational Fluid Dynamics-The
    Basic with Application,” McGRAW-Hill International Editions, 1995
    [21]林昭仁, ”薄膜流技術,” 高立圖書有限公司, 2005
    [22]朱佳仁, ”工程流體力學,” 科技圖書, 2005
    [23] I. M. Smith, D.V. Griffiths, ”Programming The Finite Element Method,” Third Edition, 1998
    [24] Yoshihiko Hirai, Masaki Fujiwara, Takahiro Okuno, Yoshio Tanaka,
    “Study of the resist deformation in Nanoimprint lithography,” J.Vac., Sci. Technol. B, Vol. 19(6), 2001
    [25] C. R. Lin, R. H. Chen and C. Hung, ”The Characterisation and
    Finite-Element Analysis of a Polymer under Hot Pressing,” National
    Chiao-Tung University, Taiwan,2002
    [26] Wen-Bin Young, “Analysis of the Nanoimprint Lithography with a
    Viscous Model,” Microelectronic Engineering, Vol. 77, 2005, pp.
    405-411
    [27] Yu-Chung Tsaia, Chinghua Hunga, Jung-Chung Hung, ”Glass Material Model for The Forming Stage of The Glass Molding Process,” Journal of materials processing technology, 2008
    [28]鄭志偉, ”MSC.Marc於熱壓性奈米壓印模擬之研究,” 國家高速網路與計算中心
    [29] Yoshihiko Hirai, Takaaki Konishi, Takashi Yoshikawa, ”Simulation and Experimental Study of Polymer Deformation in Nanoimprint Lithography,” J. Vac. Sci. Technol, 2008
    [30] 謝志偉, ”直接奈米壓印成型及摩擦效應之研究-分子動力學分析與實驗,” 國立清華大學博士論文, 2008
    [31] Yasunori Saotome, Kenichi Imai, ”The Micro Nanoformability of
    Zr-Based Amorphous Alloys in The Supercooled Liquid State and
    Their Application to Micro Dies,” J. of Materials Proc. Technol
    [32] Babak Heidaru, Ivan Maximov, ”Nanoimprint Lithography at 6 in. Wafer Scale”, J.Vac. Sci. Technol. B,Vol. 18(6), 2000
    [33] J.H.Chang, S Y. Screenivassan, ”Gas pressurize hot embossing for
    Transcription of micro feature”, 2003
    [34] B. J. Choi, S.V. Sreenivassan, ”Design of Orientation Stages for Step and Flash Imprint Lithography”, 2001
    [35] Hiroshi Hiroshima, Masanori Komuro, ”Step and Repeat Photo Nanoimprint System Using Active Orientation Head”, 2004

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE