簡易檢索 / 詳目顯示

研究生: 羅莎
Rossatorn Muangpaisal
論文名稱: Amorphous Fluorescent Organic Emitters for Electroluminescent Devices
可作為電激發光二極體之非晶態有機螢光材料
指導教授: 林建村
Lin, Jiann-T'suen
陶雨臺
Tao, Yu-Tai
口試委員: 周大新
Chow, Tahsin J
孫世勝
Sun, Shih-Sheng
周卓煇
Jou, Jwo-Huei
林建村
Lin, Jiann-T'suen
陶雨臺
Tao, Yu-Tai
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 147, 40
中文關鍵詞: 電激發光二極體
外文關鍵詞: fluorescent organic emitters, structure-property-performance relationships, amorphous materials, ambipolar transport, dendrimers
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Amorphous molecular materials have constituted a new class of functional organic materials for use as an emitting layer in organic light-emitting diode (OLEDs). This research is aimed to explore light-emitting materials that realize both high efficiency and low cost without using rare metals. Several emissive cores such as binaphthalene, pyrene, anthracene, benzothiadiazole and naphthathiadiazole have been prepared and the structure-property-performance relationships were investigated.
    Two isomeric blue-emitting compounds consisting of arylamine and benzimidazole with a binaphthalene bridge have been developed and used for OLEDs. They exhibit bipolar transporting characteristics and can be used for efficient blue-emitting OLEDs. The difference in the linking modes of the benzimidazole entity to the bridge, i.e., C-linkage (BINAPC) or N-linkage (BINAPN), leads to different photophysical and carrier-transport properties between the two isomers. The N-linkage isomer has more balanced carrier mobilities, leading to higher device efficiency.
    Highly thermally stable star-shaped molecules based on tetra-substituted pyrene possessing high glass transition temperature have been synthesized. The compounds containing peripheral arylamines (P1−P4) can be used as hole-transporting and green-emitting materials for electroluminescent devices. The compounds with peripheral fluorenes (P5 and P6) are blue-emitting and exhibit bipolar carrier transport characteristics. Both electron and hole mobilities measured by TOF method surpass 10-3 cm2/Vs. Two-layered devices using these novel materials as the hole-transporting and the emitting layer or as the electron-transporting and the emitting layer exhibited good performance.
    The site isolation effect can be achieved for planar emissive cores via encapsulation with oligophenylene dendrons containing peripheral carbazole. As a result, the compounds exhibit excellent fluorescent quantum yield in solution and solid state. In addition, the dendritic structures enable these molecules to be solution processable. The OLEDs fabricated by spin coating of the newly developed materials as guests in four different hosts were studied. Efficient red-, green-, blue-emission were observed with N,N′-dicarbazolyl-4,4′-biphenyl (CBP) as a host materials.


    Table of Contents ABSTRACT ………………………………………………………………………………I ACKNOWLEDGMENTS……………………………………………………………….III TABLE OF CONTENTS…………………………………………………………………V LIST OF FIGURES………………………………………………………………………IX LIST OF SCHEMES…………………………………………………………………....XV LIST OF TABLES……………………………………………………………………XVII LIST OF ABBREVIATIONS AND SYMBOLS……………………………………...XIX TABLE OF COMPOUNDS AND THEIR ABBREV APPEARED………………...XXIII CHAPTER 1 BACKGROUND AND INTROUCTION……………………………….1 1.1 History of organic electroluminescence…………………………………...1 1.2 Basic OLED structure and operation……………………………………...2 1.3 Light emitting materials for OLEDs………………………………………5 1.4 The efficiency of OLEDs……………………………………….………..10 1.5 Research motivation of the present work……………….…………….….11 CHAPTER 2 BINAPHTHALENE BRIDGED BIPOLAR TRANSPORTING MATERIALS FOR BLUE ELECTROLUMINESCENT DEVICES……………….13 2.1 Introduction………………………………………………………………13 2.2 Synthesis………………………………………………………………....16 2.3 Thermal properties……………………………………………………….18 2.4 Photophysical properties…………………………………………………19 2.5 Electrochemical properties…………………………………………….…23 2.6 Charge-transport properties ……………………………………………25 2.7 Quantum chemical calculations……………………………………….....27 2.8 Electroluminescent properties…………………………………………....29 2.9 Conclusion……………………………………………………………….32 CHAPTER 3 TETRASUBSTITUTED-PYRENE DERIVATIVES FOR APPLICATION IN ELECTROLUMINESCENT DEVICES……………...………..33 3.1 Introduction………………………………………………………………33 3.2 Synthesis…………………………………………………………………36 3.3 Thermal properties…………………………………………………. …...39 3.4 Photophysical properties………………………………………………...41 3.5 Electrochemical properties……………………………………………...43 3.6 Quantum chemical calculations…………………..……………………...46 3.7 Electroluminescent properties…………………………………………...49 3.8 Charge-Transport properties ……………………………………………55 3.9 Conclusion………………………………………………………………57 CHAPTER 4 ENCAPSULATED EMISSIVE CORES IN OLIGOPHENYLENE DENDRONISED CARBAZOLE FOR SOLUTION-PROCESSED MULTICOLOR EMISSION OLEDS ……………………………………………………………………58 4.1 Introduction………………………………………………………………58 4.2 Synthesis………………………………………………………………....61 4.3 Thermal properties…………………………………………………….....65 4.4 Photophysical properties…………………………………………...…….66 4.5 Electrochemical properties…………………………………………...….69 4.6 Electroluminescent properties…………………………………………...72 4.7 Conclusion……………………………………………………………….87 CHAPTER 5 EXPERIMENTAL SECTION…………………………………………89 5.1 Materials…………………………………………………………………89 5.2 Methods and instruments…..……………………………………….……89 5.3 Synthesis and structural characterization data of chapter 2…………..…94 5.4 Synthesis and structural characterization data of chapter 3……...……..104 5.5 Synthesis and structural characterization data of chapter 4…………….119 REFERENCES…………………………………………………………………………137 LIST OF PUBLICATIONS…………………………………………………………….147 APPENDIX……………………………………………………………………………….S

    References
    [1] Ono, Y. A., Electroluminescence in Encyclopedia of Applied Physics, 1st ed.; VCH,
    Weinheim 1993.
    [2] Destriau, G. J. Chim. Phys. 1936, 33, 857-858.
    [3] Pope, M.; Magnante, P.; Kallmann, H. P. J. Chem. Phys. 1963, 38 , 2042-2043.
    [4] Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett. 1987, 51, 913-915.
    [5] Burroughes, J. H.; Bradley, D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend,
    R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539-541.
    [6] Braun, D.; Heeger, A. J. Appl. Phys. Lett. 1991, 58, 1982-1984.
    [7] Kim, S.; Kwon, H. J.; Lee, S.; Shim, H.; Chun, Y.; Choi, W.; Kwack, J.; Han, D.;
    Song, M.; Kim, S.; Mohammadi, S.; Kee, I.; Lee, S. Y. Adv. Mater. 2011, 23, 3511-
    3516.
    [8] Adachi, C. Data book on HOMO levels of organic thin films in organic semiconduct-
    or devices, 1st ed.; CMC, 2005.
    [9] Duan, L. A.; Hou, L. D.; Lee, T. W.; Qiao, J. A.; Zhang, D. Q.; Dong, G. F.; Wang, L.
    D.; Qiu, Y. J. Mater. Chem. 2010, 20, 10946-10946.
    [10] Singh, M.; Haverinen, H. M.; Dhagat, P.; Jabbour, G. E. Adv. Mater. 2010, 22, 673-
    685.
    [11] Chang, Y. F.; Chiu, Y. C.; Yeh, H. C.; Chang, H. W.; Chen, C. Y.; Meng, H. F.; Lin,
    H. W.; Huang, H. L.; Chao, T. C.; Tseng, M. R.; Zan, H. W.; Horng, S. F. Org. Electron 2012, 13, 2149-2155.
    [12] Mazhari, B. Solid State Electron 2005, 49, 311-315.
    [13] Zhigang, L. Organic Light-Emitting Materials and Devices, 1st ed.; CRC Press, 2007.
    [14] Shirota, Y. J. Mater. Chem, 2005, 15, 75-93.
    [15] Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Mullen, K.; Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123, 946-953.
    [16] Zhou, X. H.; Zhang, Y.; Xie, Y. Q.; Cao, Y.; Pei, J. Macromolecules 2006, 39,
    3830-3840.
    [17] Lo, S. C.; Burn, P. L. Chem. Rev. 2007, 107, 1097-1116.
    [18] Li, J. Y.; Liu, D. J. Mater. Chem. 2009, 19, 7584-7591.
    [19] Gross, M.; Muller, D. C.; Nothofer, H. G.; Scherf, U.; Neher, D.; Brauchle, C.;
    Meerholz, K. Nature 2000, 405, 661-665.
    [20] Zhu, M. R.; Yang, C. L. Chem. Soc. Rev. 2013, 42, 4963-4976.
    [21] Huang, J. H.; Su, J. H.; Tian, H. J. Mater. Chem. 2012, 22, 10977-10989.
    [22] Wallace, J. U.; Chen, S. H. Adv. Polym. Sci. 2008, 212, 145-186.
    [23] Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann L. T.; Salbeck, J. Chem. Rev. 2007,
    107,1011-1065.
    [24] Figueira D.T. M.; Mullen, K. Chem. Rev. 2011, 111, 7260-7314.
    [25] Shirota, Y. J. Mater. Chem. 2000, 10, 1-25.
    [26] Shirota, Y.; Kobata, T.; Noma, N. Chem. Lett. 1989, 7, 1145-1148.
    [27] Ishikawa, W.; Inada, H.; Nakano, H.; Shirota, Y. Chem. Lett. 1991, 10, 1731-1734.
    [28] Inada, H.; Shirota, Y. J. Mater. Chem. 1993, 3, 319-320.
    [29] Zhang, Q. S.; Li, J.; Shizu, K.; Huang, S. P.; Hirata, S.; Miyazaki, H.; Adachi, C. J.
    Am. Chem. Soc. 2012, 134, 14706-14709.
    [30] Zhang, Q. S.; Li, B.; Huang, S. P.; Nomura, H.; Tanaka, H.; Adachi, C. Nat.
    Photonics 2014, 8, 326-332.
    [31] Kim, J. S.; Ho, P. K. H.; Greenham, N. C.; Friend, R. H. J. Appl. Phys. 2000, 88,
    1073-1081.
    [32] Adamovich, V. I.; Cordero, S. R.; Djurovich, P. I.; Tamayo, A.; Thompson, M. E.; Andrade, B. W.; Forrest, S. R. Org. Electron 2003, 4, 77-87.
    [33] Tao, Y. T.; Yang, C. L.; Qin, J. G. Chem. Soc. Rev. 2011, 40, 2943-2970.
    [34] Lai, M. Y.; Chen, C. H.; Huang, W. S.; Lin, J. T.; Ke, T. H.; Chen, L. Y.; Tsai, M. H.; Wu, C. C. Angew. Chem. Int. Ed. 2008, 47, 581-585.
    [35] Chen, C. H.; Huang, W. S.; Lai, M. Y.; Tsao, W. C.; Lin, J. T.; Wu, Y. H.; Ke, T.
    H.; Chen, L. Y.; Wu, C. C. Adv. Funct. Mater. 2009, 19, 2661-2670.
    [36] Gong, S. L.; Chen, Y. H.; Yang, C. L.; Zhong, C.; Qin, J. G.; Ma, D. G. Adv. Mater. 2010, 22 5370-5373.
    [37] Ge, Z. Y.; Hayakawa, T.; Ando, S.; Ueda, M.; Akiike, T.; Miyamoto, H.; Kajita, T.;
    Kakimoto, M. A. Adv. Funct. Mater. 2008, 18, 584-590.
    [38] Huang, J. H.; Su, J. H.; Li, X.; Lam, M. K.; Fung, K. M.; Fan, H. H.; Cheah, K.
    W.; Chen, C. H.; Tian, H. J. Mater. Chem. 2011, 21, 2957-2964.
    [39] Jo, W. J.; Kim, K. H.; No, H. C.; Shin, D. Y.; Oh, S. J.; Son, J. H.; Kim, Y. H.; Cho,
    Y. K.; Zhao, Q. H.; Lee, K. H.; Oh, H. Y.; Kwon, S. K. Synthetic Met. 2009, 159,
    1359-1364.
    [40] Ostrowski, J. C.; Hudack, R. A.; Robinson, M. R.; Wang, S. J.; Bazan, G. C. Chem-
    Eur. J. 2001, 7, 4500-4511.
    [41] Zhou, Y.; He, Q. G.; Yang, Y.; Zhong, H. Z.; He, C.; Sang, G. Y.; Liu, W.; Yang, C.
    H.; Bai, F. L.; Li, Y. F. Adv. Funct. Mater. 2008, 18, 3299-3306.
    [42] Wei, B.; Liu, J. Z.; Zhang, Y.; Zhang, J. H.; Peng, H. N.; Fan, H. L.; He, Y. B.; Gao,
    X. C. Adv. Funct. Mater. 2010, 20, 2448-2458.
    [43] Hung, W. Y.; Chi, L. C.; Chen, W. J.; Mondal, E.; Chou, S. H.; Wong, K. T.; Chi, Y. J. Mater. Chem. 2011, 21, 19249-19256.
    [44] Chien, Y. Y.; Wong, K. T.; Chou, P. T.; Cheng, Y. M. Chem. Commun. 2002, 23, 2874-2875.
    [45] Thomas, K. R. J.; Lin, J. T.; Tao, Y. T.; Ko, C. W. J. Am. Chem. Soc. 2001, 123,
    9404-9411.
    [46] Chen, Y. M.; Hung, W. Y.; You, H. W.; Chaskar, A.; Ting, H. C.; Chen, H. F.;
    Wong, K. T.; Liu, Y. H. J. Mater. Chem. 2011, 21, 14971-14978.
    [47] Lakowicz, J. R., Principles of Fluorescence Spectroscopy, 3rd ed.; Springer, 2010.
    [48] Brouwer, A. M. Pure Appl. Chem. 2011, 83, 2213-2228.
    [49] Bassler, H. Int. J. Mod. Phys. B 1994, 8, 847-854.
    [50] Arkhipov, V. I.; Bassler, H.; Rudenko, A. I. Philos. Mag. B 1992, 65, 615-619.
    [51] Lin, L. B.; Young, R. H.; Mason, M. G.; Jenekhe, S. A.; Borsenberger, P. M. Appl. Phys. Lett. 1998, 72, 864-866.
    [52] Li, Y. Q.; Fung, M. K.; Xie, Z. Y.; Lee, S. T.; Hung, L. S.; Shi, J. M. Adv. Mater. 2002, 14, 1317-1321.
    [53] Zhao, Z.; Wang, Z. L.; Hu, Y. B.; Yang, X. D.; Li, H. X.; Gao, X. K.; Zhu, D. B. J.
    Org. Chem. 2013, 78, 12214-12219.
    [54] Zhao, Z.; Zhang, F. J.; Zhang, X.; Yang, X. D.; Li, H. X.; Gao, X. K.; Di, C. A.;
    Zhu, D. B. Macromolecules 2013, 46, 7705-7714.
    [55] Chou, S. H.; Hung, W. Y.; Chen, C. M.; Liu, Q. Y.; Liu, Y. H.; Wong, K. T. Rsc.
    Adv. 2013, 3, 13891-13900.
    [56] de Halleux, V.; Calbert, J. P.; Brocorens, P.; Cornil, J.; Declercq, J. P.; Bredas, J. L.;
    Geerts, Y. Adv. Funct. Mater. 2004, 14, 649-659.
    [57] Thiebaut, O.; Bock, H.; Grelet, E. J. Am. Chem. Soc. 2010, 132, 6886-6887.
    [58] Zhang, H. J.; Wang, Y.; Shao, K. Z.; Liu, Y. Q.; Chen, S. Y.; Qiu, W. F.; Sun, X. B.;
    Qi, T.; Ma, Y. Q.; Yu, G.; Su, Z. M.; Zhu, D. B. Chem. Commun. 2006, 7, 755-757.
    [59] Malkin, J., Photophysical and Photochemical Properties of Aromatic Compounds,
    1st ed.; CRC, 1992.
    [60] Moorthy, J. N.; Natarajan, P.; Venkatakrishnan, P.; Huang, D. F.; Chow, T. J. Org.
    Lett. 2007, 9, 5215-5218.
    [61] Liu, F.; Lai, W. Y.; Tang, C.; Wu, H. B.; Chen, Q. Q.; Peng, B.; Wei, W.; Huang,
    W.; Cao, Y. Macromol. Rapid Comm. 2008, 29, 659-664.
    [62] Sonar, P.; Soh, M. S.; Cheng, Y. H.; Henssler, J. T.; Sellinger, A. Org. Lett. 2010,
    12, 3292-3295.
    [63] Zhao, Z. J.; Chen, S. M.; Lam, J. W. Y.; Lu, P.; Zhong, Y. C.; Wong, K. S.; Kwok,
    H.S.; Tang, B. Z. Chem. Commun. 2010, 46, 2221-2223.
    [64] Thomas, K. R. J.; Kapoor, N.; Bolisetty, K. P.; Jou, J. H.; Chen, Y. L.; Jou, Y. C. J.
    Org. Chem. 2012, 77, 3921-3932.
    [65] Figueira-Duarte, T. M.; Mullen, K. Chem. Rev. 2011, 11, 7260-7314.
    [66] Bernhardt, S.; Kastler, M.; Enkelmann, V.; Baumgarten, M.; Mullen, K. Chem-Eur J 2006, 12, 6117-6128.

    [67] Qin, T. S.; Wiedemair, W.; Nau, S.; Trattnig, R.; Sax, S.; Winkler, S.; Vollmer, A.;
    Koch, N.; Baumgarten, M.; List, E. J. W.; Mullen, K. J. Am. Chem. Soc. 2011, 133, 1301.
    [68] Jones, G.; Jackson, W. R.; Choi, C.; Bergmark, W. R. J. Phys. Chem. 1985, 89,
    294-300.
    [69] Gill, W. D. J. Appl. Phys. 1972, 43, 5033-5040.
    [70] Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16,
    4556-4573.
    [71] Wu, C. C.; Liu, T. L.; Hung, W. Y.; Lin, Y. T.; Wong, K. T.; Chen, R. T.; Chen,
    Y.M.; Chien, Y. Y. J. Am. Chem. Soc. 2003, 125, 3710-3711.
    [72] Huang, W. S.; Lin, J. T.; Lin, H. C. Org. Electron. 2008, 9, 557-568.
    [73] Ding, J. Q.; Wang, B.; Yue, Z. Y.; Yao, B.; Xie, Z. Y.; Cheng, Y. X.; Wang, L. X.; Jing, X. B.; Wang, F. S. Angew. Chem. Int. Edit 2009, 48, 6664-6666.
    [74] Albrecht, K.; Yamamoto, K. J. Am. Chem. Soc. 2009, 131, 2244-2251.
    [75] Markham, J. P. J.; Lo, S. C.; Magennis, S. W.; Burn, P. L.; Samuel, I. D. W. Appl.
    Phys. Lett. 2002, 80, 2645-2647.
    [76] Lo, S. C.; Anthopoulos, T. D.; Namdas, E. B.; Burn, P. L.; Samuel, I. D. W. Adv.
    Mater. 2005, 17, 1945-1948.
    [77] Furuta, P.; Brooks, J.; Thompson, M. E.; Frechet, M. J. J. Am. Chem. Soc. 2003,
    125, 13165-13172.
    [78] Halim, M.; Pillow, J. N. G.; Samuel, I. D. W.; Burn, P. L. Adv. Mater. 1999, 11,
    371-374.
    [79] Li, J. Y.; Li, Q.; Liu, D. Acs. Appl. Mater. Inter. 2011, 3, 2099-2107.
    [80] Ren, H. C.; Li, J. Y.; Wang, R. J.; Zhang, T.; Gao, Z. X.; Liu, D. Polymer 2011, 52, 3639-3646.
    [81] Wiesler, U. M.; Weil, T.; Mullen, K. Top Curr. Chem. 2001, 212, 1-40.
    [82] Ribierre, J. C.; Ruseckas, A.; Cavaye, H.; Barcena, H. S.; Burn, P. L.; Samuelt, I. D.
    W. J. Phys. Chem. A 2011, 115, 7401-7405.
    [83] Tao, Y. M.; Li, H. Y.; Xu, Q. L.; Zhu, Y. C.; Kang, L. C.; Zheng, Y. X.; Zuo, J. L.;
    You, X. Z. Synthetic Met. 2011, 161, 718-723.
    [84] Qu, J. Q.; Pschirer, N. G.; Liu, D. J.; Stefan, A.; De Schryver, F. C.; Mullen, K.
    Chem-Eur J 2004, 10, 528-537.
    [85] Birks, J. B. J. Res. Natl. Bur. Stand. 1976, 80, 389-399.
    [86] Jou, J. H.; Peng, S. H.; Chiang, C. I.; Chen, Y. L.; Lin, Y. X.; Jou, Y. C.; Chen, C.
    H.; Li, C. J.; Wang, W. B.; Shen, S. M.; Chen, S. Z.; Wei, M. K.; Sun, Y. S.; Hung,
    H. W.; Liu, M. C.; Lin, Y. P.; Li, J. Y.; Wang, C. W. J. Mater. Chem. C, 2013, 1,
    1680-1686.
    [87] Chen, L. Y.; Hung, W. Y.; Lin, Y. T.; Wu, C. C.; Chao, T. C.; Hung, T. H.; Wong,
    K.T. Appl. Phys. Lett. 2005, 87, 071910.
    [88] Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem. 2002, 67,
    5553-5566.
    [89] Chen, Y. C.; Chen, Y. H.; Chou, H. H.; Chaurasia, S.; Wen, Y. S.; Lin, J. T.; Yao, C.
    F. Chem-Asian J. 2012, 7, 1074-1084.
    [90] Huang, W. S.; Lin, J. T.; Lin, H. C. Org. Electron 2008, 9, 557-568.
    [91] Shavaleev, N. M.; Eliseeva, S. V.; Scopelliti, R.; Bunzli, J. C. G. Inorg. Chem. 2010,
    49, 3927-3936.
    [92] Bernhardt, S.; Kastler, M.; Enkelmann, V.; Baumgarten, M.; Mullen, K. Chem-Eur
    J. 2006, 12, 6117-6128.
    [93] Thomas, K. R. J.; Huang, T. H.; Lin, J. T.; Pu, S. C.; Cheng, Y. M.; Hsieh, C. C.; Tai, C. P. Chem-Eur J 2008, 14, 11231-11241.
    [94] Kanibolotsky, A. L.; Berridge, R.; Skabara, P. J.; Perepichka, I. F.; Bradley, D. D. C.; Koeberg, M. J. Am. Chem. Soc. 2004, 126, 13695-13702.
    [95] Bureš, F.; Čermáková, H.; Kulhánek, J.; Ludwig, M.; Kuznik, W.; Kityk, I. V.;
    Mikysek, T.; Růžička, A. Eur. J. Org. Chem. 2012, 2012, 529-538.
    [96] Xu, T. H.; Lu, R.; Liu, X. L.; Zheng, X. Q.; Qiu, X. P.; Zhao, Y. Y. Org. Lett. 2007,
    9, 797-800.
    [97] Ren, H. C.; Tao, Q.; Gao, Z. X.; Liu, D. Dyes Pigments 2012, 94, 136-142.
    [98] Zhang, J. T.; Chen, Z. Z.; Fu, W. X.; Xie, P.; Li, Z. B.; Yan, S. K.; Zhang, R. B. J.
    Polym. Sci. Pol. Chem. 2010, 48, 2491-2497.
    [99] Cai, T. Q.; Zhou, Y.; Wang, E. G.; Hellstrom, S.; Zhang, F. L.; Xu, S. A.; Inganas,
    O.; Andersson, M. R. Sol. Energ. Mat. Sol. C 2010, 94, 1275-1281.
    [100] Liu, J.; Bu, L. J.; Dong, J. P.; Zhou, Q. G.; Geng, Y. H.; Ma, D. G.; Wang, L. X.;
    Jing, X. B.; Wang, F. S. J. Mater. Chem. 2007, 17, 2832-2838.
    [101] Lee, P. I.; Hsu, S. L. C.; Lee, J. F.; Chuang, H. Y.; Lin, P. Y. J. Polym. Sci. Pol.
    Chem 2011, 49, 662-670.
    [102] Wei, P.; Duan, L.; Zhang, D. Q.; Qiao, J.; Wang, L. D.; Wang, R. J.; Dong, G. F.;
    Qiu, Y. J. Mater. Chem. 2008, 18, 806-818.
    [103] Godt, A.; Unsal, O.; Roos, M. J. Org. Chem. 2000, 65, 2837-2842.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE