簡易檢索 / 詳目顯示

研究生: 薛森鴻
Sen-Hong Syue
論文名稱: Characterization of field induced electro-mechanical responses on carbon nanotubes
場效應誘發奈米碳管之機電性質研究
指導教授: 施漢章
Han-Chang Shih
徐文光
Wen-Kuang Hsu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 109
中文關鍵詞: 奈米碳管電場機械性質電子性質
外文關鍵詞: carbon nanotube, electric field, mechanical property, electronic property
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The works presented in this thesis discuss the electric field effects on mechanical properties such as intertube friction, elaborate tube activities in CNT bundle, and the improvement of bundle stiffness as well as the electric properties modulation of carbon nanotubes. Intertube interaction and tube activities will essentially play the significant roles if carbon nanotubes are employed as the primary ingredient in engineering. Current works report not only the estimation of the intertube friction based on the cohesive energy of CNT bundle with the tube displacement arisen from external field, but also a field stiffening CNT bundle associated with nanotube reorganization. Electric field altered chemical potential of CNT bundle are also investigated and the detail mechanism are proposed. The substance of reversible M→S→M transition is verified by theoretical calculation, and is expected to be applied in the future.
    Chapter 1 introduces the background of carbon nanotubes in this thesis, including the mechanical properties, deformation mechanism, basic electric properties, metal-semiconductor transition, and doping effects on carbon nanotubes.
    Chapter 2 firstly describes the preliminary preparations such as the source of BCNT, which is the selected materials in our works, and the experimental setup for further tests. Secondly, the characterization techniques employed in this study are also introduced.
    Chapter 3 demonstrates a straightforward method for evaluating internanotube friction. Field induced displacement of carbon nanotubes is detected within a bundle and intertube friction is calculated via cohesive energy and electromagnetic formula. Tube-tube friction is found to be 1.4 × 10−4 N which is five orders of magnitude greater than the value obtained between adjacent layers within a nanotube.
    Chapter 4 exhibits a stiffer CNT bundle structure after electric field treatment, and detail discussion is as follows. Carbon nanotubes are reorganized into close packed bundle via electric field induced intertube displacement and calculation reveals that cohesive energy and modulus of reorganized nanotube bundle are greater than pristine structure by two orders of magnitude.
    Chapter 5 displays a metal-semiconductor transition after longitudinal field treatment in a vacuum chamber. A semiconducting phase is temporarily present in doped carbon nanotube after field treatment and underlying mechanism involves chemical potential change and EF movement by field induced charge accumulation. Metallic phase re-emerges as accumulated charges are released.
    Chapter 6 concludes the results of our experiments and proposes some feasibly researchable directions


    Abstract-------------------------------------------------------------------------------------------I Acknowledgement----------------------------------------------------------------------------IV Contents---------------------------------------------------------------------------------------VIII Table list----------------------------------------------------------------------------------------XI Figure Captions------------------------------------------------------------------------------XII Chapter 1 Introduction 1-1 Structure of carbon nanotubes-------------------------------------------------------------1 1-1-1 Graphene sheet rollup structure---------------------------------------------------------1 1-1-2 Structural stability------------------------------------------------------------------------6 1-2 Aggregation and cohesive energy of carbon nanotubes--------------------------------7 1-2-1 Self organization--------------------------------------------------------------------------7 1-2-2 Cohesive energy of carbon nanotubes-------------------------------------------------9 1-3 Mechanical properties of carbon nanotubes--------------------------------------------13 1-3-1 Young’s modulus------------------------------------------------------------------------13 1-3-2 Stone-Wales deformation--------------------------------------------------------------15 1-4 Electronic properties of carbon nanotubes---------------------------------------------18 1-4-1 Fundamental: single-walled carbon nanotubes--------------------------------------18 1-4-2 Interactions in Bundle, interlayer, and multi-walled carbon nanotubes----------20 1-4-3 Metal-Semiconductor transition in carbon nanotubes------------------------------23 1-5 Boron doped carbon nanotubes----------------------------------------------------------25 1-6 Syntheses of carbon nanotubes----------------------------------------------------------26 References---------------------------------------------------------------------------------------28 Chapter 2 Experimental 2-1 Preparation----------------------------------------------------------------------------------38 2-1-1 Fabrication of boron doped multi-walled carbon nanotubes----------------------38 2-1-2 Sample preparation and experimental setup-----------------------------------------39 2-2 Characterization instruments-------------------------------------------------------------42 References---------------------------------------------------------------------------------------44 Chapter 3 Internanotube friction 3-1 Background and motivation--------------------------------------------------------------46 3-2 Experimental details-----------------------------------------------------------------------47 3-3 Results and discussion--------------------------------------------------------------------49 3-4 Supplementary information--------------------------------------------------------------56 References---------------------------------------------------------------------------------------58 Chapter 4 Exceptional intertube cohesion 4-1 Background and motivation--------------------------------------------------------------60 4-2 Experimental details-----------------------------------------------------------------------63 4-3 Results and discussion--------------------------------------------------------------------65 4-4 Supplementary information--------------------------------------------------------------80 References---------------------------------------------------------------------------------------82 Chapter 5 Temporary transition in suspended carbon nanotubes 5-1 Background and motivation--------------------------------------------------------------84 5-2 Experimental details-----------------------------------------------------------------------85 5-3 Results and discussion--------------------------------------------------------------------88 5-4 Supplementary information--------------------------------------------------------------99 References--------------------------------------------------------------------------------------100 Chapter 6 Conclusions----------------------------------------------------------------------102 Appendices A. Energy evaluations of three possible paths--------------------------------------------104 B. Field induced blockade and release procedure----------------------------------------106 C. Ab-initio method for band structure calculation details------------------------------108 References--------------------------------------------------------------------------------------109

    [1] S. Iijima, Nature, 354, 56 (1991).
    [2] T. H. WTBZHenning, F. Salama, Science, 282, 2204 (1998).
    [3] H. Hiura, T. W. Ebbesen, J. Fujita, K. Tanigaki, T. Takada, Nature, 367, 148 (1994).
    [4] R. Saito, G. Dresselhaus, M. S. Dresselhasu, Physical Properties of Carbon Nanotubes, London, Imperial College Press, 1998.
    [5] N. Wang, Z. K. Tang, G. D. Li, J. S. Chen, Nature, 408, 50 (2000).
    [6] Q. H. Yang, S. Bai, J. L. Sauvajol, J. B. Bai, Adv. Mater. 15, 792 (2003).
    [7] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of fullerenes & Carbon Nanotubes, San Diego: Academic Press, 1996.
    [8] B. I. Yakobson, R. E. Smalley, Am. Sci. 85, 324 (1997).
    [9] J. C. Charlier, J. P. Michenaud, Phys. Rev. Lett. 70, 1858 (1993).
    [10] T. W. Ebbessen, P. M. Ajayan, Nature, 358, 220 (1992).
    [11] C. H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. Lett. 81,1869 (1998).
    [12] M. Liu and J. M. Cowley, Carbon, 32, 393 (1994).
    [13] G. G. Tibbetts, J. Cryst. Growth, 66, 632 (1984).
    [14] D. H. Robertson, D. W. Brenner, J. W. Mintmire, Phys. Rev. B, 45, 12592 (1992).
    [15] S. Sawada, N. Hamada, Solid State Comm. 83, 917 (1992).
    [16] A. A. Lucas, P. H. Lambin, R. E. Smalley, J. Phys. Chem. Solids, 54, 587 (1993).
    [17] N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).
    [18] P. M. Ajayan, S. Iijima, Nature, 358, 23 (1992).
    [19] L. M. Peng, Z. L. Zhang, Z. Q. Xue, Q. D. Wu, Z. N. Gu, D. G. Pettifor, Phys. Rev. Lett. 85, 3249 (2000).
    [20] N. G. Chopra, L. X. Benedict, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl, Nature, 377, 135 (1995).
    [21] G. H. Gao, T. Cagin, W. A. Goddard, Nanotechnology, 9, 184 (1998).
    [22] L. A. Girifalco, M. Hodak, R. S. Lee, Phys. Rev. B, 62, 13104 (2000).
    [23] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C.H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tom□nek, J. E. Fischer, R. E. Smalley, Science, 273, 483, (1996).
    [24] J. Tersoff, R. S. Ruoff, Phys. Rev. Lett. 73, 676 (1994).
    [25] R. S. Ruoff, J. Tersoff, D. C. Lorents, S. Subramoney, B. Chan, Nature, 364, 514 (1993).
    [26] L. A. Girifalco, M. Hodak, Phys. Rev. B, 65, 125404 (2002).
    [27] R. Tucknott, S. N. Yaliraki, Chem. Phys. 281, 455 (2002).
    [28] C. H. Sun, L. C. Yin, F. Li, G. Q. Lu, H. M. Cheng, Chem. Phys. Lett. 403, 343 (2005).
    [29] X. Q. He, S. Kitipornchai, C. M. Wang, K. M. Liew, Inter. J. Solids & Structures, 42, 6032 (2005).
    [30] J. Tersoff, Phys. Rev. B, 46, 15546 (1992).
    [31] J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988).
    [32] K. Suenaga, M. Tenc□, C. Mory, C. Colliex, H. Kato, T. Okazaki, H. Shinohara, K. Hirahara, S. Bandow, S. Iijima, Science, 290, 2280 (2000).
    [33] S. Bandow, M, Takizawa, K. Hirahara, M. Yudasaka, S. Iijima, Chem. Phys. Lett. 337, 48 (2001).
    [34] Y. Ye, C. C. Ahn, C. Whitham, B. Fultz, J. Lu, A. G. Rinzler, D. Colbert, K. A. Smith, and R. E. Smalley, Appl. Phys. Lett. 74, 2307 (1999).
    [35] L. X. Benedict, N. G. Chopra, M. L. Cohen, A. Zettl, S. G. Louie, V. H. Crespi, Chem. Phys. Lett. 286, 490 (1998).
    [36] R. Setton, Carbon, 33, 1135 (1995).
    [37] M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg, Graphite Fibers and Filaments. Berlin: Springer-Verlag, 1988.
    [38] D. W. Brenner, Phys. Rev. B, 42, 9458, (1990).
    [39] C. F. Cornwell, L. T. Wille, Solid State Comm. 101, 555, (1998).
    [40] C. F. Cornwell, L. T. Wille, J. Chem. Phys. 109,763 (1998).
    [41] B. I. Yakobson, C. J. Brabec, J. Bernholc, Phys. Rev. Lett. 76, 2511 (1996).
    [42] J. P. Lu, Phys. Rev. Lett. 79, 1297 (1997).
    [43] E. Hern□ndez, C. Goze, P. Bernier, A. Rubio, Phys. Rev. Lett. 80, 4502 (1998).
    [44] X. Zhou, J. J. Zhou, Z. C. Qu-Yang, Phys. Rev. B, 62, 13692 (2000).
    [45] T. Ozaki, Y, Iwasa, T. Mitani, Phys. Rev. Lett. 84, 1712 (2000).
    [46] M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature, 381, 678, (1996).
    [47] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy, Phys. Rev. B, 58, 14013, (1998).
    [48] P. Poncharal, Z. L. Wang, D. Ugarte, W. A. de Heer, Science, 283, 1513 (1999).
    [49] Z. L. Wang, P. Poncharal, W. A. de Heer, J. Phys. Chem. Solids. 61, 1025 (2000).
    [50] E. W. Wong, P. E. Sheehan, C. M. Lieber, Science, 277, 1971 (1997).
    [51] J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Basca, A. J. Kulik, T. St□ckli, N. A. Burnham, L. Forr□, Phys. Rev. Lett. 82, 944, (1999).
    [52] M. F. Yu, L. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Science, 287, 637 (2000).
    [53] M. F. Yu, B. S. Files, S. Arepalli, R. S . Ruoff, Phys. Rev. Lett. 84, 5552, (2000).
    [54] Z. W. Pan, S. S. Xie, L. Lu, B. H. Chang, L. F. Sun, W. Y. Zhou, G. Wang, D. L. Zhang, Appl. Phys. Lett. 74, 3152 (1999).
    [55] B. I. Yakobson, G. Samsonidze, G. G. Samsonidze, Carbon, 38, 1675 (2000).
    [56] M. B. Nardelli, B. I. Yakobson, J. Brenholc, Phys. Rev. B, 57, 4277 (1998).
    [57] M. B. Nardelli, B. I. Yakobson, J. Brenholc, Phys. Rev. Lett. 81, 4656 (1998).
    [58] B. I. Yakobson, Appl. Phys. Lett. 72, 918 (1998).
    [59] P. Calvert, Nature, 399, 210 (1999).
    [60] M. B. Nardelli, J. L. Fattebert, D. Orlikowski, C. Roland, Q. Zhao, J. Bernholc, Carbon, 38, 1703 (2000).
    [61] J. Y. Huang, S. Chen, Z. Q. Wang, K. Kempa, Y. M. Wang, S. H. Jo, G. Chen, M. S. Dresselhaus, Z. F. Ren, Nature, 439, 281 (2006).
    [62] S. Iijima, C. Brabec, A. Maiti, J. Bernholc, J. Chem. Phys. 104, 2089 (1996).
    [63] J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68, 631 (1992).
    [64] R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 18, 2204 (1992).
    [65] T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, Nature, 391, 62 (1998).
    [66] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature, 391, 59 (1998).
    [67] C. T. White, T. N. Todorov, Nature, 393, 240 (1998).
    [68] C. L. Kane, E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997).
    [69] P. Delaney, H. J. Choi, J. Ihm, S. G. Louie, M. L. Cohen, Nature, 391, 466 (1998).
    [70] Y. K. Kwon, S. Saito, D. Tom□nek, Phys. Rev. B, 58, R13314, (1998).
    [71] P. Delaney, H. J. Choi, J. Ihm, S. G. Louie, M. L. Cohen, Phys. Rev. B, 60, 7899 (1999).
    [72] M. Ouyang, J. L. Huang, C. L. Cheung, C. M. Lieber, Science, 292, 702 (2001).
    [73] R. Saito, G. Dresselhaus, M. S. Dresselhaus, J. Appl. Phys. 73, 494 (1993).
    [74] Q. Yan, J. Wu, G. Zhou, W. Duan, B. L. Gu, Phys. Rev. B, 72, 155425 (2005).
    [75] A. Urbina, I. Echeverr□a, A. P□rez-Garrido, A. D□az-S□nchez, J. Abell□n, Phys. Rev. Lett. 90, 106603 (2003).
    [76] A. Bachtold, C. Strunk, J. P. Salvetat, J. M. Bonard, L. Forr□, T. Nussbaumer, C. Schonenberger, Nature, 397, 673 (1999).
    [77] B. Wei, R. S. Spolenak, P. Kohler-Redlich, M. R□hle, E. Arzt, Appl. Phys. Lett. 74, 3149 (1999).
    [78] S. Y. Lu, W. K. Hsu, Carbon, 43, 2222 (2005).
    [79] K. Liu, Ph. Avouris, R. Martel, W. K. Hsu, Phys. Rev. B, 63, 161404 (2001).
    [80] J. Cumings, P. G. Collins, A. Zettl, Nature, 406, 586 (2000).
    [81] J. Cumings, A. Zettl, Science, 289, 602 (2000).
    [82] A. Kis, K. Jensen, S. Aloni, W. Mickelson, A. Zettl, Phys. Rev. Lett. 97, 025501 (2006).
    [83] J. Cumings, A. Zettl, Phys. Rev. Lett. 93, 086801 (2004).
    [84] B. Bourlon, C. Miko, L. Forr□, D. C. Glattli, A. Bachtold, Phys. Rev. Lett. 93, 176806 (2004).
    [85] V. H. Crespi, M. L. Cohen, Phys. Rev. Lett. 79, 2093, (1997).
    [86] R. Heyd, A. Charlier, E. McRae, Phys. Rev. B, 55, 6820 (1997).
    [87] P. Zhang, P. E. Lammert, V. H. Crespi, Phys. Rev. Lett. 81, 5346 (1998).
    [88] P. E. Lammert, P. Zhang, V. Crespi, Phys. Rev. Lett. 84, 2453 (2000).
    [89] M. B. Nardelli, J. Bernholc, Phys. Rev. B, 60, 16338 (1999).
    [90] A. Rochefort, P. Avouris, F. Lesage, D. R. Salahub, Phys. Rev. B, 60, 13824 (1999).
    [91] A. Rochefort, D. R. Salahub, P. Avouris, Chem. Phys. Lett. 297, 45 (1998).
    [92] A. Vijayaraghavan, K. Kanzaki, S. Suzuki, Y. Kobayashi, H. Inokawa, Y. Ono, S. Kar, P. M. Ajayan, Nano Lett. 5, 1575 (2005).
    [93] X. Zhou, H. Chen, Q. Zhoung-can, J. Phys.: Condens. Mater. 13, L635 (2001).
    [94] C. W. Chen, M. H. Lee, S. J. Clark, Nanotechnology, 15, 1837 (2004).
    [95] J. O’Keeffe, C. Wei, K. Cho, Appl. Phys. Lett. 80, 676 (2002).
    [96] Y. H. Kim, K. J. Chang, Phys. Rev. B, 64, 153404 (2001).
    [97] C. Chen, C. C. Tsai, J. M. Lu, C. C. Hwang, J. Phys. Cehm. B, 110, 12384 (2006).
    [98] C. Kim, B. Kim, S. M. Lee, C. Jo, Y. H. Lee, Phys. Rev. B, 65, 165418 (2002).
    [99] Y. Li, S. V. Rotkin, U. Ravaioli, Nano Lett. 3, 183 (2003).
    [100] A. Rochefort, M. D. Ventra, P. Avouris, Appl. Phys. Lett. 78, 2521 (2001).
    [101] L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, M. L. Cohen, Phys. Rev. Lett. 76, 971 (1996).
    [102] M. Ouyang, J. Huang, C. Cheung, C.M. Lieber, Science, 291, 97 (2001).
    [103] W. K. Hsu, S. Firth, P. Redlich, M. Terrones, H. Terrones, Y. Q. Zhu, N. Grobert, A. Schilder, R. J. H. Clark, H. W. Kroto, D. R. M. Walton, J. Mater. Chem. 10, 1425 (2000).
    [104] W. K. Hsu, S. Y. Chu, E. Mu□oz-Picone, J. L. Bold□, S. Firth, P. Fanchi, B. P. Roberts, A. Schilder, H. Terrones, N. Grobert, Y. Q. Zhu, M. Terrones, M. E. McHenry, H. W. Kroto, D. R. M. Walton, Chem. Phys. Lett. 323, 572 (2000).
    [105] D. L. Carroll, Ph. Redlich, X. Blase, J. C. Charlier, S. Curran, P. M. Ajayan, S. Roth, M. R□hle, Phys. Rev. Lett. 81, 2332 (1998).
    [106] Y. Miyamoto, A. Rubio, S. G. Louie, M. L. Cohen, Phys. Rev. B, 50, 18360 (1994).
    [107] D. Tom□nek, R. M. Wentzcovitch, S. G. Louie, M. L. Cohen, Phys. Rev. B, 37, 3134 (1998).
    [108] X. Blase, J. C. Charlier, A. De Vita, R. Car, Ph. Redlich, M. Terrones, W. K. Hsu, H. Terrones, D. L. Carroll, P. M. Ajayan, Phys. Rev. Lett. 83, 5078 (1999).
    [109] Ph. Redlich, J. Loeffler, P. M. Ajayan, J. Bill, F. Aldinger, M. R□hle, Chem. Phys. Lett. 260, 465 (1996).
    [110] L. H. Chan, K. H. Hong, D. Q. Xiao, W. J. Hsieh, S. H. Lai, T. C. Lin, F. S. Shieu, K. J. Chen, H. C. Cheng, H. C. Shih, Appl. Phys. Lett. 82, 4334 (2003).
    [111] L. H. Chan, K. H. Hong, S. H. Lai, X. W. Liu, H. C. Shih, Thin Solid Films, 423, 27 (2003).
    [112] S. H. Tsai, C. T. Shiu, S. H. Lai, H. C. Shih, Carbon, 40, 1597 (2002).
    [113] S. H. Tsai, C. T. Shiu, W. J. Jong, H. C. Shih, Carbon, 38, 1879 (2000).
    [114] F. K. Chiang, S. H. Tsai, F. S. Shieu, H. C. Shih, J. Mater. Sci. Lett. 19, 671 (2000).
    [115] S. H. Tsai, C. L. Lee, C. W. Chao, H. C. Shih, Carbon, 38, 781 (2000).
    [116] S. L. Sung, S. H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu, H. C. Shih, J. Mater. Res. 15, 502 (2000).
    [117] S. H. Tsai, C. W. Chao, C. L. Lee, H. C. Shih, Appl. Phys. Lett. 74, 3462 (1999).
    [118] S. L. Sung, S. H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu, H. C. Shih, Appl. Phys. Lett. 74, 197 (1999).
    [119] Y. H. Yang, C. Y. Wang, U. S. Chen, W. J. Hsieh, Y. S. Chang, H. C. Shih, J. Phys. Chem. C, 111, 1601 (2007).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE