簡易檢索 / 詳目顯示

研究生: 王 馨
Wang, Hsin
論文名稱: 飢餓環境下誘導的M-Sec透過促進奈米隧道管形成以增加癌症幹細胞之特性
Starvation-induced M-Sec enhances cancer stem cell properties through promoting the formation of tunneling nanotubes
指導教授: 李佳霖
Lee, Jia-Lin
口試委員: 張壯榮
Chang, Chuang-Rung
王翊青
Wang, I-Ching
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 51
中文關鍵詞: 奈米隧道管M-Sec癌症幹細胞飢餓
外文關鍵詞: tunneling nanotubes, M-Sec, CSC, starvation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • M-Sec,是一種也被稱為TNFα誘導蛋白2或B94的蛋白質,其被認為是致癌蛋白質 (onco-protein) 和促進奈米隧道管 (tunneling nanotubes, TNTs) 形成的關鍵因子。奈米隧道管是一種細胞間通訊的結構,參與了蛋白質、胞器甚至幹細胞標誌的運輸,因此可能與癌症幹細胞 (cancer stem cells, CSCs) 的進展有關。我們假設,M-Sec會透過促進奈米隧道管的形成以調節癌症幹細胞的特性。在此研究中,M-Sec在具有幹細胞特性的癌細胞HM20中被剔出或過表達,並觀察細胞間奈米隧道管的數量和其癌症幹細胞的特性。在HM20細胞中過度表達M-Sec增加了奈米隧道管的形成,而剔除M-Sec則減少了奈米隧道管的形成。當HM20細胞處於低血清所造成的飢餓環境下,M-Sec的表現量和奈米隧道管的形成會增加。此外,我們也發現M-Sec會透過奈米隧道管上調癌症幹細胞相關的基因之表現量和細胞形成球體的能力。這些研究結果表明,飢餓誘導的M-Sec促進奈米隧道管的形成並因此增加癌症幹細胞特性。我們認為,腫瘤的過度生長會導致細胞處於飢餓等不利的環境,使存活下來的細胞癌症幹細胞特性增強,而M-Sec在這之中扮演了一定的角色。


     M-Sec, also named TNFα‐inducible protein 2 or B94, is known as an onco-protein and a key factor of the formation of tunneling nanotubes (TNTs). TNT is a kind of intercellular communication structure involved in protein, organelles and even stem cell marker transfer. TNTs may relate with the progress of cancer stem cells (CSCs). We hypothesis that M-Sec promotes the formation of TNTs to regulate CSC properties. In this study, M-Sec was knockouted or overexpressed in stem-like cancer cells, HM20 cells, then the presence of TNTs and the properties of CSC were examined. The overexpression of M-Sec increased the formation of TNTs, while the deficiency of M-Sec decreased the formation of TNTs. When HM20 cells were suffered from serum-starvation, the expression of M-Sec and the formation of TNTs was upregulated. In addition, M-Sec is involved in the expression of CSC-related genes and the ability of sphere forming through TNTs. These results indicate that starvation-induced M-Sec promotes the formation of TNTs and consequently increase the CSC properties. We proposed that overgrowth of tumours leads cells to be in an adverse environment such as starvation, and the CSC properties of survival cells will be enhanced. This study provided a role that M-Sec defines the cancer stem cell population.

    CONTENT Chapter 1. Introduction 3 Cancer stem cells 3 Cancer initiation 3 The properties of cancer stem cells 3 The enhancement of cancer stem cell properties under stresses 4 Tunneling nanotubes 5 Intercellular bridge directly connects cells 5 Involving in cancer initiation and progression 5 The formation of tunneling nanotubes 6 M-Sec 7 The function of M-Sec in cancer progression 7 A key factor in the formation of tunneling nanotubes 7 Aim 8 Chapter 2. Materials and Methods 9 Cell culture 9 Plasmid transfection 9 Gene knockout by CRISPR/Cas9 9 Western blot 9 Immunofluorescence 10 Quantification of tunneling nanotubes 11 Co-cultivation and vesicle transfer assay 11 Starvation assay and drug treatment 12 Quantification of mRNA expression level 12 Sphere forming assay 13 Chapter 3. Results 14 Using CRISPR/Cas9 system to delete M-Sec gene in HM20 cell 14 The formation of tunneling nanotubes is promoted by M-Sec 15 M-Sec positively regulates intercellular vesicle transfer in HM20 cells 15 M-Sec is upregulated under starvation and consequently induces the formation of tunneling nanotubes 16 The intercellular vesicle transfer is regulated by M-Sec 17 The upregulation of CD133 is processed by M-Sec through tunneling nanotubes 18 The upregulation of genes related with cancer stem cells are processed by M-Sec 19 The sphere forming ability is promoted by M-Sec through tunneling nanotubes 19 Chapter 4. Discussion and conclusion 21 M-Sec promotes the formation of tunneling nanotubes 21 Serum starvation induces the expression of M-Sec and the formation of tunneling nanotubes 22 M-Sec processes the upregulation of CSC properties under starvation through tunneling nanotubes 23 Conclusion and future works 24 References 26

    Cao, L., Zhou, Y., Zhai, B., Liao, J., Xu, W., Zhang, R., Li, J., Zhang, Y., Chen, L., Qian, H., et al. (2011). Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterology 11, 71.
    Chen, C.C., Liu, H.P., Chao, M., Liang, Y., Tsang, N.M., Huang, H.Y., Wu, C.C., and Chang, Y.S. (2014). NF-kappaB-mediated transcriptional upregulation of TNFAIP2 by the Epstein-Barr virus oncoprotein, LMP1, promotes cell motility in nasopharyngeal carcinoma. Oncogene 33, 3648-3659.
    Chiba, T., Kita, K., Zheng, Y.-W., Yokosuka, O., Saisho, H., Iwama, A., Nakauchi, H., and Taniguchi, H. (2006). Side population purified from hepatocellular carcinoma cells harbors cancer stem cell–like properties. Hepatology 44, 240-251.
    D'Aloia, A., Berruti, G., Costa, B., Schiller, C., Ambrosini, R., Pastori, V., Martegani, E., and Ceriani, M. (2018). RalGPS2 is involved in tunneling nanotubes formation in 5637 bladder cancer cells. Exp Cell Res 362, 349-361.
    Dang, C.V. (2012). MYC on the path to cancer. Cell 149, 22-35.
    Dean, M., Fojo, T., and Bates, S. (2005). Tumour stem cells and drug resistance. Nature Reviews Cancer 5, 275-284.
    Furth, J., Kahn, M.C., and Breedis, C. (1937). The Transmission of Leukemia of Mice with a Single Cell. The American Journal of Cancer 31, 276-282.
    Hase, K., Kimura, S., Takatsu, H., Ohmae, M., Kawano, S., Kitamura, H., Ito, M., Watarai, H., Hazelett, C.C., Yeaman, C., et al. (2009). M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat Cell Biol 11, 1427-1432.
    Islam, M.N., Das, S.R., Emin, M.T., Wei, M., Sun, L., Westphalen, K., Rowlands, D.J., Quadri, S.K., Bhattacharya, S., and Bhattacharya, J. (2012). Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nature Medicine 18, 759.
    Jia, L., Shi, Y., Wen, Y., Li, W., Feng, J., and Chen, C. (2018). The roles of TNFAIP2 in cancers and infectious diseases. J Cell Mol Med 22, 5188-5195.
    Jia, L., Zhou, Z., Liang, H., Wu, J., Shi, P., Li, F., Wang, Z., Wang, C., Chen, W., Zhang, H., et al. (2016). KLF5 promotes breast cancer proliferation, migration and invasion in part by upregulating the transcription of TNFAIP2. Oncogene 35, 2040-2051.
    Kimura, S., Yamashita, M., Yamakami-Kimura, M., Sato, Y., Yamagata, A., Kobashigawa, Y., Inagaki, F., Amada, T., Hase, K., Iwanaga, T., et al. (2016). Distinct Roles for the N- and C-terminal Regions of M-Sec in Plasma Membrane Deformation during Tunneling Nanotube Formation. Scientific Reports 6, 33548.
    Koyanagi, M., Brandes Ralf, P., Haendeler, J., Zeiher Andreas, M., and Dimmeler, S. (2005). Cell-to-Cell Connection of Endothelial Progenitor Cells With Cardiac Myocytes by Nanotubes. Circulation Research 96, 1039-1041.
    Kreso, A., and Dick, J.E. (2014). Evolution of the cancer stem cell model. Cell Stem Cell 14, 275-291.
    Lou, E., Fujisawa, S., Barlas, A., Romin, Y., Manova-Todorova, K., Moore, M.A., and Subramanian, S. (2012a). Tunneling Nanotubes: A new paradigm for studying intercellular communication and therapeutics in cancer. Commun Integr Biol 5, 399-403.
    Lou, E., Fujisawa, S., Morozov, A., Barlas, A., Romin, Y., Dogan, Y., Gholami, S., Moreira, A.L., Manova-Todorova, K., and Moore, M.A.S. (2012b). Tunneling Nanotubes Provide a Unique Conduit for Intercellular Transfer of Cellular Contents in Human Malignant Pleural Mesothelioma. PLOS ONE 7, e33093.
    O'Brien, C.A., Kreso, A., and Jamieson, C.H.M. (2010). Cancer Stem Cells and Self-renewal. Clinical Cancer Research 16, 3113-3120.
    Pardal, R., Clarke, M.F., and Morrison, S.J. (2003). Applying the principles of stem-cell biology to cancer. Nature Reviews Cancer 3, 895-902.
    Pasquier, J., Galas, L., Boulange-Lecomte, C., Rioult, D., Bultelle, F., Magal, P., Webb, G., and Le Foll, F. (2012). Different modalities of intercellular membrane exchanges mediate cell-to-cell p-glycoprotein transfers in MCF-7 breast cancer cells. J Biol Chem 287, 7374-7387.
    Pasquier, J., Magal, P., Boulange-Lecomte, C., Webb, G., and Le Foll, F. (2011). Consequences of cell-to-cell P-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model. Biol Direct 6, 5.
    Pastrana, E., Silva-Vargas, V., and Doetsch, F. (2011). Eyes Wide Open: A Critical Review of Sphere-Formation as an Assay for Stem Cells. Cell Stem Cell 8, 486-498.
    Reichert, D., Scheinpflug, J., Karbanova, J., Freund, D., Bornhauser, M., and Corbeil, D. (2016). Tunneling nanotubes mediate the transfer of stem cell marker CD133 between hematopoietic progenitor cells. Exp Hematol 44, 1092-1112 e1092.
    Rolf, H.J., Niebert, S., Niebert, M., Gaus, L., Schliephake, H., and Wiese, K.G. (2012). Intercellular Transport of Oct4 in Mammalian Cells: A Basic Principle to Expand a Stem Cell Niche? PLOS ONE 7, e32287.
    Schiller, C., Diakopoulos, K.N., Rohwedder, I., Kremmer, E., von Toerne, C., Ueffing, M., Weidle, U.H., Ohno, H., and Weiss, E.H. (2013). LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation. J Cell Sci 126, 767-777.
    Sisakhtnezhad, S., and Khosravi, L. (2015). Emerging physiological and pathological implications of tunneling nanotubes formation between cells. European Journal of Cell Biology 94, 429-443.
    Song, Y.-j., Zhang, S.-s., Guo, X.-l., Sun, K., Han, Z.-p., Li, R., Zhao, Q.-d., Deng, W.-j., Xie, X.-q., zhang, J.-w., et al. (2013). Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Letters 339, 70-81.
    Takahashi, A., Kukita, A., Li, Y.-j., Zhang, J.-q., Nomiyama, H., Yamaza, T., Ayukawa, Y., Koyano, K., and Kukita, T. (2013). Tunneling nanotube formation is essential for the regulation of osteoclastogenesis. Journal of Cellular Biochemistry 114, 1238-1247.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872.
    Tavaluc, R.T., Hart, L.S., Dicker, D.T., and El-Deiry, W.S. (2007). Effects of Low Confluency, Serum Starvation and Hypoxia on the Side Population of Cancer Cell Lines. Cell Cycle 6, 2554-2562.
    Ward, R.J., Lee, L., Graham, K., Satkunendran, T., Yoshikawa, K., Ling, E., Harper, L., Austin, R., Nieuwenhuis, E., Clarke, I.D., et al. (2009). Multipotent CD15+ Cancer Stem Cells in Patched-1–Deficient Mouse Medulloblastoma. Cancer Research 69, 4682-4690.

    QR CODE