研究生: |
宋金穎 Jin-Yiing Song |
---|---|
論文名稱: |
微孔性聚偏氟乙烯高分子電解質之電化學特性研究 Electrochemical Study of Microporous Polymer Electrolytes Based on Poly(vinylidene fluoride) Copolymer |
指導教授: |
王詠雲
Yung-Yun Wang 萬其超 Chi-Chao Wan |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 236 |
中文關鍵詞: | 高分子電解質 、鋰離子電池 、聚偏氟乙烯 、多孔薄膜 、電池隔離膜 、交流阻抗 、離子導電度 |
外文關鍵詞: | Polymer electrolyte, Lithium-ion battery, Poly(vinylidene fluoride), Porous membrane, Battery separator, AC-Impedance, Ionic conductivity |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討可應用於鋰離子二次電池之微孔性聚偏氟乙烯共聚合體(poly(vinylidene fluoride-co-hexafluoropropylene);PVDF/HFP)膠態電解質在離子傳導、薄膜微孔結構、製備方式、以及界面等方面的特性,所採用的研究分析工具包括掃瞄式電子顯微鏡(SEM)、氣體吸附/脫附法(BET)、差分掃瞄式卡計(DSC)、交流阻抗頻譜分析、及一些標準電化學分析技術等。除了評估電解質本身的特性外,還就其與傳統電池隔離膜之間的差異進行比較和討論。此外,有關於導電度與界面性質測量之交流阻抗頻譜,本文亦有系統化的詳細討論。
微孔性PVDF/HFP高分子電解質之常溫離子導電度隨所吸電解液之不同而介於1.4到2.1 mS/cm之間,遷移係數約為0.75左右。導電度雖然只達到原液態電解質的1/2到1/3,但在大部份狀況下仍高於傳統電池隔離膜。後者與部份電解液之間有潤溼效果不良的問題,而且與電解液之間的作用力不明顯,部份電解液很容易在升溫時揮發。相反地,PVDF/HFP高分子電解質在這兩種特性上卻有優異之表現,高分子本身與電解液之間的膨潤(swell)作用可能就是主要的貢獻因素。PVDF/HFP高分子電解質的導電活化能約為17 kJ/mol,仍然高於液態電解質(£ 8 kJ/mol)與傳統隔離膜(約11 kJ/mol),但卻比非多孔性的PAN系膠態電解質(約18-21 kJ/mol)稍低,顯示薄膜的多孔化設計確實對改善離子移動性(mobility)有所幫助,但高分子對離子傳導的影響則依然不能忽略。
PVDF/HFP多孔薄膜的其中一面覆蓋著許多可能在成膜過程中因溶劑揮發而被帶至表面的二氧化矽(silica)粒子,另一面則較少。基本上,它的孔洞結構相當均勻,孔洞本身的形狀接近於圓柱形,且孔徑甚小,平均孔徑約小於或等於20 nm,最大者很少超過40 nm。相對地,傳統隔離膜(Celgard® 2400)的表面最大孔徑則有60 ´ 240 nm,比PVDF/HFP薄膜大了許多。製備過程中,若塑化劑的沸點及黏度愈高,則所製備而得的薄膜雖孔徑微微變大、但有薄膜平整度佳、孔隙度較高、電解液吸收量較多、故導電度較高等優點。
除了塑化/萃取法外,亦可利用控制揮發法來製備具孔洞結構之高分子薄膜。後者所製備的薄膜,平均孔徑約為30 nm,最多可吸入約原薄膜2倍重的電解液。根據諸多特點來看,控制揮發法可以省略前者所必須之萃取步驟,故頗具應用上之潛力。至於以傳統溶劑揮發法所製備而得的薄膜,則因多屬於不具孔洞結構的連續膜,故在電解液吸收能力上相對甚差。
在交流阻抗分析方面,發現PVDF/HFP高分子電解質與鋰金屬之間界面的阻抗雖然一開始會持續變大,但一段時間後仍然會緩和下來。另一方面,實驗發現電解質與石墨之間的界面阻抗不因靜態儲存時間或鋰鹽種類而有所改變,似乎顯示兩者之間的化學穩定度甚佳,並沒有任何鈍化層的產生。至於鋰/碳半電池方面,因受鋰金屬端界面阻抗變化的重大影響,往往讓碳極在充放電特性及阻抗大小的顯示上有誤,獲得不到真正的訊息。此時應採用三極系統觀察之。在三極法交流阻抗分析方面,發現碳極在經過鋰離子嵌入後,其交流阻抗圖譜之低頻區會出現代表電感效應的半圓,可能是碳極表面有類似中間產物的吸附/脫附現象。對內阻較小的電池來說,導線的電感效應很容易地出現在阻抗圖譜之高頻區。此外,發現交流阻抗頻譜具有加成性,唯內阻較低的系統需要先經過一校正程序。此圖譜加成性可作為檢查圖譜本身正確與否的依據。最後,發現鋰離子電池的正極材料是主要的阻抗來源,且隨著充放電次數的增加而有逐漸加大的趨勢。
This dissertation presents the ionic transport property, microstruc-ture, impact of different preparation schemes, and interfacial property of microporous gel electrolytes based on poly(vinylidene fluo-ride-co-hexafluoropropylene) (PVDF/HFP) for lithium-ion batteries by scanning electron microscopy (SEM) ,nitrogen adsorption/desorption method (BET), differential scanning calorimetry (DSC), ac-impedance spectroscopy, and certain standard electrochemical techniques. The dif-ferences between the PVDF/HFP-based electrolytes and conventional battery separators were clearly pointed out. In addition, all complex im-pedance spectra pertaining to the measurement of ionic conductivity and interfacial property were systematically introduced and discussed as well.
Depending upon the absorbed liquid electrolytes, the ambi-ent-temperature conductivities of PVDF/HFP-based electrolytes ranged from 1.4 to 2.1 mS/cm, approximately half to one-third of those corre-sponding liquid electrolytes, whereas the transference numbers remained at around 0.75. The conductivities of PVDF/HFP-based electrolytes were even, in most cases, superior to those of Celgard® 2400 separators. In fact, the latter often suffers from poor wetting with many liquid electrolytes. Besides, weak interaction between polyolefin and polar electrolytes also facilitated the escape of electrolyte components from separators at ele-vated temperature. In contrary, PVDF/HFP-based electrolytes were free from these deficiencies, possibly due to the swelling between PVDF/HFP and liquid electrolytes. Nonetheless, the average activation energy of con-duction for PVDF/HFP-based electrolytes (ca. 17 kJ/mol) was larger than those of liquid electrolytes (£ 8 kJ/mol) and battery separators (ca. 11 kJ/mol) but smaller than that of polyacrylonitrile (PAN)-based gel electrolytes, implying that the porous nature of the membranes indeed enhanced the ionic mobility whereas the polymer still hindered the ionic transport to certain extent.
PVDF/HFP-based porous membranes were covered on one side with silica particles that were brought to the surface of the membrane by the casting solvent during preparation. Basically, the porous structure of the membranes were very uniform and the pore shape was kind of cylin-drical. The average pore diameter is about 20 nm and most pores are no larger than 40 nm. On the other hand, the maximum pore dimension at surface of Celgard® 2400 is as large as 60 ´ 240 nm. Except for the ex-pense of slightly larger pore size, the membranes would have better uni-formity, higher porosity, more electrolyte uptake, and hence higher ionic conductivity if plasticizers with higher boiling point and viscosity were used during preparation.
Both the plasticization/extraction method (i.e. the Bellcore process) and controlled-evaporation are capable of forming microporous mem-branes. The membranes prepared by controlled evaporation, which had an average pore diameter of ca. 30 nm, could absorb almost twice as that of the original weight of a dry membrane. As a result, controlled evaporation method is qualified to replace the original plasticization/extraction method. Simple solvent evaporation method, on the contrary, often leads to non-porous membranes and thus having inferior electrolyte-uptake ca-pability.
Interfacial impedance between PVDF/HFP-based electrolytes and lithium metal, although still growing, could attain delicate kinetic equi-librium upon prolonged storage. Graphite, on the other hand, was found to remain inert toward PVDF/HFP membranes. Its interfacial impedance did not vary with increasing storage time and with different lithium salts. However, it was found that the lithium-side impedance of a Li/C half cell would often prevent us from obtaining practical information of the carbon electrode and thus a three-electrode impedance study was called for under this condition. We found, in particular, that an inductive loop would ap-pear in the low-frequency region of the impedance spectrum of a carbon electrode once after the first lithium-intercalation step, probably implying that an adsorption/desorption phenomenon might exist at the interface. Moreover, another inductive effect arising from the connecting leads would also appear at high-frequency region. Finally, the positive elec-trode was found to be the major source of cell impedance and it would increase with increasing cycle number.
==========
Chapter 1
==========
[1] D. Linden, Handbook of Batteries, 2nd ed., McGraw-Hill, New York, USA (1994).
[2] S. Yoda and K. Ishihara, “The advent of battery-based society and the global environment in the 21st century”, J. Power Sources, 81-82, 162-169 (1999).
[3] J. O. Besenhard, Handbook of Battery Materials, Wiley-VCH, Weinheim, Germany (1999).
[4] M. Wakihara and O. Yamamoto, Lithium Ion Batteries: Fundamentals and Performance, Wiley-VCH, Weinheim, Germany (1998).
[5] M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novák, “Insertion electrode materials for rechargeable lithium batteries”, Adv. Mater., 10, 725-763 (1998).
[6] B. Scrosati, “Lithium rocking chair batteries: an old concept?”, J. Electrochem. Soc., 139, 2776-2781 (1992).
[7] S. Megahed and B. Scrosati, “Rechargeable nonaqueous batteries. The role of lithium systems”, Interface, 4(4), 34-37 (1995).
[8] J. R. Owen, “Rechargeable lithium batteries”, Chem. Soc. Rev., 26, 259-267 (1997).
[9] E. Peled, “The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems ¾ The solid electrolyte interphase model“, J. Electrochem. Soc., 126, 2047-2051 (1979).
[10] E. Peled, D. Golodnitsky, G. Ardel, and V. Eshkenazy, “The SEI model ¾ application to lithium polymer electrolyte batteries”, Electrochim. Acta, 40, 2197-2204 (1995).
[11] E. Peled, D. Golodnitsky, and G. Ardel, “Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes”, J. Electrochem. Soc., 144, L208-L210 (1997).
[12] E. Peled, D. Golodnitsky, and J. Penciner, “The anode/electrolyte interface”, in Handbook of Battery Materials, J. O. Besenhard, Editor, p.419-456, Wiley-VCH, Weinheim, Germany (1999).
[13] Y. Ein-Eli, “A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of Li-ion cells”, Electrochem. Solid-State Lett., 2, 212-214 (1999).
[14] S. B. Brummer and V. R. Koch, “The recharging of the lithium electrode in organic electrolytes”, in Materials for Advanced Batteries, D. W. Murphy, J. Broadhead, and B. C. H. Steele, Editors, p.123-143, Plenum Press, New York, USA (1980).
[15] K. M. Abraham, “Directions in secondary lithium battery research and development”, Electrochim. Acta, 38, 1233-1248 (1993).
[16] W. Böhnstedt, “Separators”, in Handbook of Battery Materials, J. O. Besenhard, Editor, p.245-292, Wiley-VCH, Weinheim, Germany (1999).
[17] R. Spotnitz, “Separators for lithium-ion batteries”, in Handbook of Battery Materials, J. O. Besenhard, Editor, p.553-563, Wiley-VCH, Weinheim, Germany (1999).
[18] M. J. Weighall, “Recent advances in polyethylene separator technology”, J. Power Sources, 34, 257-268 (1991).
[19] G. Venugopal, J. Moore, J. Howard, S. Pendalwar, “Characterization of microporous separators for lithium-ion batteries”, J. Power Sources, 77, 34-41 (1999).
[20] J.-Y. Sanchez and F. Alloin, The Sixth International Symposium on Polymer Electrolytes, Extended Abstracts No. V-03-IL, p.25, Hayama, Kanagawa, Japan, November 1-6, 1998.
[21] J. L. Gineste and G. Pourcelly, “Polypropylene separator grafted with hydrophilic monomers for lithium batteries”, J. Membr. Sci., 107, 155-164 (1995).
[22] B. Scrosati, Applications of Electroactive Polymers, Chapman & Hall, London, UK (1993).
[23] F. M. Gray, Solid Polymer Electrolytes: Fundamentals and Technological Applications, VCH, New York, USA (1991).
[24] F. M. Gray, Polymer Electrolytes, RSC materials monographs, The Royal Society of Chemistry, Cambridge, UK (1997).
[25] D. E. Fenton, J. M. Parker, and P. V. Wright, “Complexes of alkali metal ions with poly(ethylene oxide)”, Polymer, 14, 589-589 (1973).
[26] M. B. Armand, J. M. Chabagno, and M. Duclot, Second International Meeting on Solid Electrolytes, Extended Abstract, St. Andrews, Scotland, September 20-22, 1978.
[27] M. B. Armand, J. M. Chabagno, and M. Duclot, “Poly-ethers as solid electrolytes”, in Fast Ion Transport in Solids, P. Vashista, J. N. Mundy, and G. K. Shenoy, Editors, p.131-136, Elsevier, North-Holland, Amsterdam, Netherlands (1979).
[28] J. R. MacCallum and C. A. Vincent, Polymer Electrolyte Reviews-1, Elsevier Applied Science, London, UK (1987).
[29] J. R. MacCallum and C. A. Vincent, Polymer Electrolyte Reviews-2, Elsevier Applied Science, London, UK (1989).
[30] M. Alamgir and K. M. Abraham, “Room temperature polymer electrolytes”, in Lithium Batteries: New Materials, Developments, and Perspectives, G. Pistoia, Editor, p.93-136, Elsevier, North-Holland, Amsterdam, Netherlands (1994).
[31] R. Koksbang, I. I. Olsen, and D. Shackle, “Review of hybrid polymer electrolytes and rechargeable lithium batteries”, Solid State Ionics, 69, 320-335 (1994).
[32] D. F. Shriver and P. G. Bruce, “Polymer electrolytes I: general principles”, in Solid State Electrochemistry, P. G. Bruce, Editor, p.95-118, Cambridge University Press, Cambridge, UK (1995).
[33] P. G. Bruce and F. M. Gray, “Polymer electrolytes II: physical principles”, in Solid State Electrochemistry, P. G. Bruce, Editor, p.119-162, Cambridge University Press, Cambridge, UK (1995).
[34] W. H. Meyer, “Polymer electrolytes for lithium-ion batteries”, Adv. Mater., 10, 439-448 (1998).
[35] F. Gray and M. Armand, “Polymer electrolytes”, in Handbook of Battery Materials, J. O. Besenhard, Editor, p.499-523, Wiley-VCH, Weinheim, Germany (1999).
[36] J. Y. Song, Y. Y. Wang, and C. C. Wan, “Review of gel-type polymer electrolytes for lithium-ion batteries”, J. Power Sources, 77, 183-197 (1999).
[37] K. Murata, S. Izuchi, and Y. Yoshihisa, “An overview of the research and development of solid polymer electrolyte batteries”, Electrochim. Acta, 45, 1501-1508 (2000).
[38] Panel Discussion, “Future prospects of lithium batteries”, J. Power Sources, 68, 173-186 (1997).
[39] K. Murata, “An overview of the research and development of solid polymer electrolyte batteries”, Electrochim. Acta, 40, 2177-2184 (1995).
[40] B. Scrosati and R. J. Neat, “Lithium polymer batteries”, in Applications of Electroactive Polymers, B. Scrosati, Editor, p.182-222, Chapman & Hall, London, UK (1993).
[41] G. P. Bierwagen, “Film coating technologies and adhesion”, Electrochim. Acta, 37, 1471-1478 (1992).
[42] M. A. Ratner, “Polymer solid electrolytes: charge transport mechanism”, Materials Forum, 15, 1-15 (1991).
[43] D. Baril, C. Michot, and M. B. Armand, “Electrochemistry of liquids vs. solids: polymer electrolytes”, Solid State Ionics, 94, 35-47 (1997).
[44] R. G. Linford, “Electrical and electrochemical properties of ion conducting polymers”, in Applications of Electroactive Polymers, B. Scrosati, Editor, p.1-28, Chapman & Hall, London, UK (1993).
[45] J. Evans, C. A. Vincent, and P. G. Bruce, “Electrochemical measurement of transference numbers in polymer electrolytes”, Polymer, 28, 2324-2328 (1987).
[46] P. G. Bruce, M. T. Hardgrave, and C. A. Vincent, “The determination of transference numbers in solid polymer electrolytes using the Hittorf method”, Solid State Ionics, 53-56, 1087-1094 (1992).
[47] I. I. Olsen, R. Koksbang, and E. Skou, “Transference number measurements on a hybrid polymer electrolyte”, Electrochim. Acta, 40, 1701-1706 (1995).
[48] M. Doyle, T. F. Fuller, and J. Newman, “The importance of the lithium ion transference number in lithium/polymer cells”, Electrochim. Acta, 39, 2073-2081 (1994).
[49] C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, and P. Rigaud, “Microscopic investigation of ionic conductivity in alkali-metal salts poly(ethylene oxide) adducts”, Solid State Ionics, 11, 91-95 (1983).
[50] R. Borkowska, J. Laskowski, J. Plocharski, J. Przyluski, and W. Wieczorek, “Performance of acrylate-poly(ethylene oxide) polymer electrolytes in lithium batteries”, J. Appl. Electrochem., 23, 991-995 (1993).
[51] W. Wieczorek, Z. Florjanczyk, and J. R. Stevens, “Composite polyether based solid electrolytes”, Electrochim. Acta, 40, 2251-2258 (1995).
[52] E. Quartarone, P. Mustarelli, and A. Magistris, “PEO-based composite polymer electrolytes”, Solid State Ionics, 110, 1-14 (1998).
[53] W. Wieczorek and J. R. Stevens, “Impedance spectroscopy and phase structure of polyether-poly(methyl methacrylate)-LiCF3SO3 blend-based electrolytes”, J. Phys. Chem. B, 101, 1529-1534 (1997).
[54] C. Booth, C. V. Nicholas, and D. J. Wilson, “High polymers with main-chain oxyethylene sequences”, in Polymer Electrolyte Reviews-2, J. R. MacCallum and C. A. Vincent, Editors, p.229-254, Elsevier Applied Science, London, UK (1989).
[55] J. F. LeNest, S. Callens, A. Gandini, and M. Armand, “New polymer network for ionic conduction”, Electrochim. Acta, 37, 1585-1588 (1992).
[56] Y. Ito, K. Kanehori, K. Miyauchi, and T. Kudo, “Ionic conductivity of electrolytes formed from PEO-LiCF3SO3 complex with low molecular weight poly(ethylene glycol)”, J. Mater. Sci., 22, 1845-1849 (1987).
[57] I. E. Kelly, J. R. Owen, and B. C. H. Steele, “Poly(ethylene oxide) electrolytes for operation at near room-temperature”, J. Power Sources, 14, 13-21 (1985).
[58] B. Sandner, T. Steurich, K. Wiesner, and H. Bischoff, “Solid polymer electrolytes based on oligo(ethylene glycol)methacrylates. 1. Conductivity of plasticized networks containing a polar comonomer”, Polym. Bull., 28, 355-360 (1992).
[59] G. Nagasubramanian, S. Di Stefano, “12-Crown-4 ether-assisted enhancement of ionic conductivity and interfacial kinetics in polyethylene oxide electrolytes”, J. Electrochem. Soc., 137, 3830-3835 (1990).
[60] G. B. Appetecchi, G. Dautzenberg, and B. Scrosati, “A new class of advanced polymer electrolytes and their relevance in plastic-like, rechargeable lithium batteries”, J. Electrochem. Soc., 143, 6-12 (1996).
[61] G. B. Apetecchi, F. Croce, and B. Scrosati, “High-performance electrolyte membranes for plastic lithium batteries”, J. Power Sources, 66, 77-82 (1997).
[62] M. C. Borghini, M. Mastragostino, S. Passerini, and B. Scrosati, “Electrochemical properties of polyethylene oxide-Li[(CF3SO2)2N]-gamma-LiAlO2 composite polymer electrolytes”, J. Electrochem. Soc., 142, 2118-2121 (1995).
[63] M. Watanabe, M. Kanba, H. Matsuda, K. Mizoguchi, I. Shinohara, E. Tsuchida, and K. Tsunemi, “High lithium ionic-conductivity of polymeric solid electrolytes”, Makromol. Chem.-Rapid. Commun., 2, 741-744 (1981).
[64] M. Watanabe, M. Kanba, K. Nagaoka, and I. Shinohara, “Ionic conductivity of hybrid films based on polyacrylonitrile and their battery application”, J. Appl. Electrochem., 27, 4191-4198 (1982).
[65] M. Watanabe, M. Kanba, K. Nagaoka, and I. Shinohara, “Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClO4”, J. Polym. Sci.: Polym. Phys. Edit., 21, 939-948 (1983).
[66] K. M. Abraham and M. Alamgir, “Li+-conductive solid polymer electrolytes with liquid-like conductivity”, J. Electrochem. Soc., 137, 1657-1658 (1990).
[67] K. M. Abraham and M. Alamgir, “Solid electrolytes”, U.S. Patent No.5,219,679 (1993).
[68] F. Croce, F. Gerace, G. Dautzenberg, S. Passerini, G. B. Appetecchi, and B. Scrosati, “Synthesis and characterization of highly conducting gel electrolytes”, Electrochim. Acta, 39, 2187-2194 (1994).
[69] S. Slane and M. Salomon, “Composite gel electrolyte for rechargeable lithium batteries”, J. Power Sources, 55, 7-10 (1995).
[70] G. Dautzenberg, F. Croce, S. Passerini, and B. Scrosati, “Characterization of PAN-based gel electrolytes. Electrochemical stability and lithium cyclability”, Chem. Mater., 6, 538-542 (1994).
[71] D. Peramunage, D. M. Pasquariello, and K. M. Abraham, “Polyacrylonitrile-based electrolytes with ternary solvent mixtures as plasticizers”, J. Electrochem. Soc., 142, 1789-1798 (1995).
[72] H. S. Choe, B. G. Carroll, D. M. Pasquariello, and K. M. Abraham, “Characterization of some polyacrylonitrile-based electrolytes”, Chem. Mater., 9, 369-379 (1997).
[73] F. Croce, S. D. Brown, S. G. Greenbaum, S. M. Slane, and M. Salomon, “Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on poly(acrylonitrile)”, Chem. Mater., 5, 1268-1272 (1993).
[74] Z. Wang, B. Huang, H. Huang, R. Xue, L. Chen, and F. Wang, “A vibrational spectroscopic study on the interaction between lithium salt and ethylene carbonate plasticizer for PAN-based electrolytes”, J. Electrochem. Soc., 143, 1510-1514 (1996).
[75] B. Huang, Z. Wang, G. Li, H. Huang, R. Xue, and L. Chen, “Lithium ion conduction in polymer electrolytes based on PAN”, Solid State Ionics, 85, 79-84 (1996).
[76] Z. Wang, B. Huang, S. Wang, R. Xue, X. Huang, and L. Chen, “Competition between the plasticizer and polymer on associating with Li+ ions in polyacrylonitrile-based electrolytes”, J. Electrochem. Soc., 144, 778-786 (1997).
[77] Z. Wang, B. Huang, R. Xue, X. Huang, and L. Chen, “Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes”, Solid State Ionics, 121, 141-156 (1999).
[78] K. M. Abraham, H. S. Choe, and D. M. Pasquariello, “Polyacrylonitrile electrolyte-based Li ion batteries”, Electrochim. Acta, 43, 2399-2412 (1998).
[79] T. Iijima, Y. Toyoguchi, and N. Eda, “Quasi-solid organic electrolytes gelatinized with polymethyl-methacrylate and their applications for lithium batteries”, Denki Kagaku, 53, 619-623 (1985).
[80] O. Bohnke, C. Rousselot, P. A. Gillet, and C. Truche, “Gel electrolyte for solid-state electrochromic cell”, J. Electrochem. Soc., 139, 1862-1865 (1992).
[81] O. Bohnke, G. Frand, M. Rezrazi, C. Rousselot, and C. Truche, “Fast ion transport in new lithium electrolytes gelled with PMMA. 1. Influence of polymer concentration”, Solid State Ionics, 66, 97-104 (1993).
[82] O. Bohnke, G. Frand, M. Rezrazi, C. Rousselot, and C. Truche, “Fast ion transport in new lithium electrolytes gelled with PMMA. 2. Influence of lithium salt concentration”, Solid State Ionics, 66, 105-112 (1993).
[83] G. B. Appetecchi, F. Croce, and B. Scrosati, “Kinetics and stability of the lithium electrode in poly(methyl methacrylate)-based gel electrolytes”, Electrochim. Acta, 40, 991-997 (1995).
[84] P. E. Stallworth, S. G. Greenbaum, F. Croce, S. Slane, and M. Salomon, “Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on poly(methylmethacrylate)”, Electrochim. Acta, 40, 2137-2141 (1995).
[85] X. Liu and T. Osaka, “Properties of electric double-layer capacitors with various polymer gel electrolytes”, J. Electrochem. Soc., 144, 3066-3071 (1997).
[86] E. Quartarone, C. Tomasi, P. Mustarelli, G. B. Appetecchi, and F. Croce, “Long-term structural stability of PMMA-based gel polymer electrolytes”, Electrochim. Acta, 43, 1435-1439 (1998).
[87] 衛子健,「鋰電池之PMMA系膠態高分子電解質之研究」,碩士論文,國立清華大學化工系,1999。
[88] M. Alamgir and K. M. Abraham, “Li ion conductive electrolytes based on poly(vinyl chloride)”, J. Electrochem. Soc., 140, L96-L97 (1993).
[89] M. Alamgir and K. M. Abraham, “Solid polymer electrolyte lithium batteries”, U.S. Patent No.5,252,413 (1993).
[90] G. Pistoia, A. Antonini, and G. Wang, “Impedance study on the reactivity of gel polymer electrolytes towards a lithium electrode”, J. Power Sources, 58, 139-144 (1996).
[91] A. M. Sukeshini, A. Nishimoto, and M. Watanabe, “Transport and electrochemical characterization of plasticized poly(vinyl chloride) solid electrolytes”, Solid State Ionics, 86-88, 385-393 (1996).
[92] 宋錫岳,「鋰二次電池之應用研究 ¾ PVC系膠態高分子電解質電化學性質之探討」,碩士論文,國立清華大學化工系,1996。
[93] H. Y. Sung, Y. Y. Wang, and C. C. Wan, “Preparation and characterization of poly(vinyl chloride-co-vinyl acetate)-based gel electrolytes for Li-ion batteries”, J. Electrochem. Soc., 145, 1207-1211 (1998).
[94] Y. Y. Wang, C. C. Wan, and H. Y. Sung, “Polymer electrolyte material for use in lithium and lithium ion batteries”, U.S. Patent No. 5,874,185 (1999).
[95] S. Rajendran and T. Uma, “Experimental investigations on PVC-LiAsF6-DBP polymer electrolyte systems”, J. Power Sources, 87, 218-222 (2000).
[96] E. Tsuchida, H. Ohno, and K. Tsunemi, “Conduction of lithium ions in polyvinylidene fluoride and its derivatives-I”, Electrochim. Acta, 28, 591-595 (1983).
[97] K. Tsunemi, H. Ohno, and E. Tsuchida, “A mechanism of ionic-conduction of poly(vinylidene fluoride)-lithium perchlorate hybrid films”, Electrochim. Acta, 28, 833-837 (1983).
[98] A. S. Gozdz, J. M. Tarascon, C. N. Schmutz, P. C. Warren, O. S. Gebizlioglu, and F. K. Shokoohi, Fall Meeting of The Electrochemical Society, Abstract No. 117, Extended Abstracts, Vol. 94-2, Miami, Florida, October 9-14, 1994.
[99] A. S. Gozdz, C. N. Schmutz, and J. M. Tarascon, “Rechargeable lithium intercalation battery with hybrid polymeric electrolyte”, U.S. Patent No.5,296,318 (1994).
[100] A. S. Gozdz, C. N. Schmutz, J. M. Tarascon, and P. C. Warren, “Polymeric electrolytic cell separator membrane”, U.S. Patent No.5,418,091 (1995).
[101] A. S. Gozdz, J. M. Tarascon, and P. C Warren, “Electrolyte activatable lithium-ion rechargeable battery cell”, U.S. Patent No.5,460,904 (1995).
[102] J. M. Tarascon, A. S. Gozdz, C. N. Schmutz, F. Shokoohi, and P. C. Warren, “Performance of Bellcore’s plastic rechargeable Li-ion batteries”, Solid State Ionics, 86-88, 49-54 (1996).
[103] Z. Jiang, B. Carroll, and K. M. Abraham, “Studies of some poly(vinylidene fluoride) electrolytes”, Electrochim. Acta, 42, 2667-2677 (1997).
[104] P. Periasamy, K. Tatsumi, M. Shikano, T. Fujieda, T. Sakai, Y. Saito, M. Mizuhata, A. Kajinami, and S. Deki, “An electrochemical investigation on polyvinylidene fluoride-based gel polymer electrolytes”, Solid State Ionics, 126, 285-292 (1999).
[105] G. B. Appetecchi, F. Croce, A. De Paolis, and B. Scrosati, “A poly(vinylidene fluoride)-based gel electrolyte membrane for lithium batteries”, J. Electroanal. Chem., 463, 248-252 (1999).
[106] K. M. Abraham, Z. Jiang, and B. Carroll, “Highly conductive PEO-like polymer electrolytes”, Chem. Mater., 9, 1978-1988 (1997).
[107] A. M. Voice, G. R. Davies, and I. M. Ward, “Structure of poly(vinylidene fluoride) gel electrolytes”, Polym. Gels Networks, 5, 123-144 (1997).
[108] P. Mustarelli, E. Quartarone, C. Capiglia, C. Tomasi, and A. Magistris, “Cation dynamics in PVdF-based polymer electrolytes”, Solid State Ionics, 122, 285-289 (1999).
[109] I. M. Ward, M. J. Williamson, H. V. St. A. Hubbard, J. P. Southall, and G. R. Davies, “NMR studies of ionic mobility in polymer gel electrolytes for advanced lithium batteries”, J. Power Sources, 81-82, 700-704 (1999).
[110] P. E. Stallworth, J. J. Fontanella, M. C. Wintersgill, C. D. Scheidler, J. J. Immel, S. G. Greenbaum, and A. S. Gozdz, “NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes”, J. Power Sources, 81-82, 739-747 (1999).
[111] V. Arcella, A. Sanguineti, E. Quartarone, and P. Mustarelli, “Vinylidenefluoride-hexafluoropropylene copolymers as hybrid electrolyte components for lithium batteries”, J. Power Sources, 81-82, 790-794 (1999).
[112] F. Boudin, X. Andrieu, C. Jehoulet, and I. I. Olsen, “Microporous PVdF gel for lithium-ion batteries”, J. Power Sources, 81-82, 804-807 (1999).
[113] C. Capiglia, Y. Saito, H. Yamamoto, H. Kageyama, and P. Mustarelli, “Transport properties and microstructure of gel polymer electrolytes”, Electrochim. Acta, 45, 1341-1345 (2000).
[114] Y. Saito, C. Capiglia, H. Yamamoto, and P. Mustarelli, “Ionic conduction mechanisms of poly(vinylidenefluoride-hexafluoropropylene) type polymer electrolytes with LiN(CF3SO2)2”, J. Electrochem. Soc., 147, 1645-1650 (2000).
[115] T. Michot, A. Nishimoto, and M. Watanabe, “Electrochemical properties of polymer gel electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer”, Electrochim. Acta, 45, 1347-1360 (2000).
[116] S. B. Ross-Murphy, “Formation, structure and properties of physical networks”, in Polymer Networks.¾Principles of Their Formation, Structure and Properties, R. F. T. Stepto, Editor, p.288-315, Blackie Academic & Professional, London, UK (1998).
[117] L. H. Sperling, Introduction to Physical Polymer Science, 2nd ed., p.382-457, John Wiley & Sons, New York, USA (1993).
[118] T. T. Cheng and T. C. Wen, “Novel waterborne polyurethane based electrolytes for lithium batteries – (I) tailor-made polymer”, J. Electroanal. Chem., 459, 99-110 (1998).
[119] Y. T. Cheng and T. C. Wen, “Novel waterborne polyurethane based electrolytes for lithium batteries – (II) the effect of adding LiCF3SO3-PC”, Solid State Ionics, 107, 161-171 (1998).
[120] T. C. Wen, J. S. Chang, and Y. T. Cheng, “An investigation of composite electrolytes by mixing polyethylene oxide-and-polytetramethylene glycol-based waterborne polyurethane with the addition of LiClO4/propylene carbonate”, J. Electrochem. Soc., 145, 3450-3455 (1998).
[121] T. C. Wen, Y. J. Wang, T. T. Cheng, and C. H. Yang, “The effect of DMPA units on ionic conductivity of PEG-DMPA-IPDI waterborne polyurethane as single-ion electrolytes”, Polymer, 40, 3979-3988 (1999).
==========
Chapter 2
==========
[1] M. J. Weighall, “Recent advances in polyethylene separator technology”, J. Power Sources, 34, 257-268 (1991).
[2] (a) W. Böhnstedt, “Separators”, in Handbook of Battery Materials, J. O. Be-senhard, Editor, p.245-292, Wiley-VCH, Weinheim, Germany (1999).; (b) R. Spotnitz, “Separators for lithium-ion batteries”, ibid., p.553-563.
[3] M. Alamgir and K. M. Abraham, “Room temperature polymer electrolytes”, in Lithium Batteries: New Materials, Developments, and Perspectives, G. Pistoia, Editor, p.93-136, Elsevier, North-Holland, Amsterdam, Netherlands (1994).
[4] F. M. Gray, Polymer Electrolytes, RSC materials monographs, The Royal So-ciety of Chemistry, Cambridge, UK (1997).
[5] J. Y. Song, Y. Y. Wang, and C. C. Wan, “Review of gel-type polymer electro-lytes for lithium-ion batteries”, J. Power Sources, 77, 183-197 (1999).
[6] G. Feullade and Ph. Perche, J. Appl. Electrochem., 5, 63 (1975).
[7] K. M. Abraham and M. Alamgir, “Li+-conductive solid polymer electrolytes with liquid-like conductivity”, J. Electrochem. Soc., 137, 1657-1658 (1990).
[8] K. M. Abraham and M. Alamgir, “Solid electrolytes”, U.S. Patent No. 5,219,679 (1993).
[9] A. S. Gozdz, J. M. Tarascon, C. N. Schmutz, P. C. Warren, O. S. Gebizlioglu, and F. K. Shokoohi, Fall Meeting of The Electrochemical Society, Abstract No. 117, Extended Abstracts, Vol. 94-2, Miami, Florida, October 9-14, 1994.
[10] A. S. Gozdz, C. N. Schmutz, and J. M. Tarascon, “Rechargeable lithium inter-calation battery with hybrid polymeric electrolyte”, U.S. Patent No.5,296,318 (1994).
[11] A. S. Gozdz, C. N. Schmutz, J. M. Tarascon, and P. C. Warren, “Polymeric electrolytic cell separator membrane”, U.S. Patent No.5,418,091 (1995).
[12] A. S. Gozdz, J. M. Tarascon, and P. C Warren, “Electrolyte activatable lithium-ion rechargeable battery cell”, U.S. Patent No.5,460,904 (1995).
[13] S. Lowell and J. E. Shields, Powder Surface Area and Porosity, 3rd ed., Chap-man & Hall, London, UK (1991).
[14] P. J. Haines, Thermal Methods of Analysis: Principles, Applications and Prob-lems, Blackie Academic & Professional, London, UK (1995).
[15] K. M. Abraham, “Directions in secondary lithium battery research and devel-opment”, Electrochim. Acta, 38, 1233-1248 (1993).
[16] G. Venugopal, J. Moore, J. Howard, S. Pendalwar, “Characterization of micro-porous separators for lithium-ion batteries”, J. Power Sources, 77, 34-41 (1999).
[17] A. F. M. Barton, CRC Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd ed., CRC Press, Boca Raton, FL, USA (1991).
[18] KYNAR® and KYNAR FLEX® PVDF Technical Brochure, Elf Atochem North American, Inc., Philadelphia, PA, USA.
[19] A. Bottino, G. Capannelli, S. Munari, and A. Turturro, “Solubility parameters of poly(vinylidene fluoride)”, J. Polym. Sci., Part B: Polym. Phys., 26, 785 (1988).
[20] J. Brandrup and E. H. Immergut, Polymer Handbook, 3rd ed., John Wiley & Sons, New York, USA (1989).
[21] P. G. Bruce, “Electrical measurements on polymer electrolytes”, in Polymer Electrolyte Reviews¾1, J. R. MacCallum and C. A. Vincent, Editors, p.237-274, Elsevier, London, UK (1987).
[22] R. D. Armstrong and M. Todd, “Interfacial electrochemistry”, in Solid State Electrochemistry, P. G. Bruce, Editor, p.264-291, Cambridge Univ. Press, Cambridge, UK (1995).
[23] M. Watanabe and N. Ogata, “Ionic conductivity of poly(propylene oxide) elec-trolytes”, in Polymer Electrolyte Reviews¾1, J. R. MacCallum and C. A. Vin-cent, Editors, p.39-68, Elsevier, London, UK (1987).
[24] H. Y. Sung, Y. Y. Wang, and C. C. Wan, “Preparation and characterization of poly(vinyl chloride-co-vinyl acetate)-based gel electrolytes for Li-ion batter-ies”, J. Electrochem. Soc., 145, 1207-1211 (1998).
[25] K. M. Abraham, Z. Jiang, and B. Carroll, “Highly conductive PEO-like poly-mer electrolytes”, Chem. Mater., 9, 1978-1988 (1997).
[26] G. B. Appetecchi, F. Croce, A. De Paolis, and B. Scrosati, “A poly(vinylidene fluoride)-based gel electrolyte membrane for lithium batteries”, J. Electroanal. Chem., 463, 248-252 (1999).
[27] J. Fleig and J. Maier, “Rough electrodes in solid and liquid electrochemistry: impact of morphology on the impedance”, Solid State Ionics, 94, 199-207 (1997).
[28] J. Fleig and J. Maier, “The impedance of imperfect electrode contacts on solid electrolytes”, Solid State Ionics, 85, 17-24 (1996).
[29] D. R. Lide, Handbook of Organic Solvents, CRC Press, Boca Raton, FL, USA (1995).
[30] H. S. Choe, B. G. Carroll, D. M. Pasquariello, and K. M. Abraham, “Charac-terization of some polyacrylonitrile-based electrolytes”, Chem. Mater., 9, 369-379 (1997).
[31] Y. Saito, C. Capiglia, H. Yamamoto, and P. Mustarelli, “Ionic conduction mechanisms of poly(vinylidenefluoride-hexafluoropropylene) type polymer electrolytes with LiN(CF3SO2)2”, J. Electrochem. Soc., 147, 1645-1650 (2000).
[32] P. Mustarelli, E. Quartarone, C. Capiglia, C. Tomasi, and A. Magistris, “Cation dynamics in PVdF-based polymer electrolytes”, Solid State Ionics, 122, 285-289 (1999).
[33] P. E. Stallworth, J. J. Fontanella, M. C. Wintersgill, C. D. Scheidler, J. J. Immel, S. G. Greenbaum, and A. S. Gozdz, “NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes”, J. Power Sources, 81-82, 739-747 (1999).
[34] A. W. Adamson, Physical Chemistry of Surfaces, 5th ed., John Wiley & Sons, New York, USA (1989).
==========
Chapter 3
==========
[1] K. M. Abraham, “Directions in secondary lithium battery research and devel-opment”, Electrochim. Acta, 38, 1233-1248 (1993).
[2] J. Y. Song, Y. Y. Wang, and C. C. Wan, “Review of gel-type polymer electro-lytes for lithium-ion batteries”, J. Power Sources, 77, 183-197 (1999).
[3] A. S. Gozdz, J. M. Tarascon, C. N. Schmutz, P. C. Warren, O. S. Gebizlioglu, and F. K. Shokoohi, Fall Meeting of The Electrochemical Society, Abstract No. 117, Extended Abstracts, Vol. 94-2, Miami, Florida, October 9-14, 1994.
[4] M. Mulder, Basic Principles of Membrane Technology, p.54-144, Kluwer Aca-demic Publishers, Dordrecht, Netherlands (1991).
[5] H. C. Shih, Y. S. Yeh, and H. Yasuda, “Morphology of microporous poly(vinylidene fluoride) membranes studied by gas permeation and scanning electron microscopy”, J. Membr. Sci., 50, 299-317 (1990).
[6] A. Bottino, G. Camera-Roda, G. Capannelli, and S. Munari, “The formation of microporous polyvinylidene difluoride membranes by phase separation”, J. Membr. Sci., 57, 1-20 (1991).
[7] K. M. Abraham, Z. Jiang, and B. Carroll, “Highly conductive PEO-like poly-mer electrolytes”, Chem. Mater., 9, 1978-1988 (1997).
[8] J. Evans, C. A. Vincent, and P. G. Bruce, “Electrochemical measurement of transference numbers in polymer electrolytes”, Polymer, 28, 2324-2328 (1987).
[9] S. K. Wason, “Synthetic silicas”, in Handbook of fillers for plastics, H. S. Katz and J. V. Milewski, Editors, p.165-201, Van Nostrand Reinhold, New York, USA (1987).
[10] J. H. de Boer, The Structure and Properties of Porous Materials, p.68, But-ter-worths, London, UK (1958).
[11] S. Lowell and J. E. Shields, Powder Surface Area and Porosity, 3rd ed., chap-ter 8, Chapman & Hall, London, UK (1991).
[12] F. Boudin, X. Andrieu, C. Jehoulet, and I. I. Olsen, “Microporous PVdF gel for lithium-ion batteries”, J. Power Sources, 81-82, 804-807 (1999).
[13] C. Capiglia, Y. Saito, H. Yamamoto, H. Kageyama, and P. Mustarelli, “Trans-port properties and microstructure of gel polymer electrolytes”, Electrochim. Acta, 45, 1341-1345 (2000).
==========
Chapter 4
==========
[1] M. Mulder, Basic Principles of Membrane Technology, p.54-144, Kluwer Aca-demic Publishers, Dordrecht, Netherlands (1991).
[2] A. S. Gozdz, C. N. Schumutz, and J.-M. Tarascon, “Rechargeable lithium in-tercalation battery with hybrid polymeric electrolyte”, U.S. Patent No.5,296,318 (1994).
[3] A. S. Gozdz, C. N. Schmutz, J.-M. Tarascon, and P. C. Warren, “Polymeric electrolytic cell separator membrane”, U.S. Patent No.5,418,091 (1995).
[4] A. S. Gozdz, J.-M. Tarascon, and P. C. Warren, “Electrolyte activatable lith-ium-ion rechargeable battery cell”, U.S. Patent No.5,460,904 (1995).
[5] X. Andrieu and L. Josset, “Bifunctional electrode for an electrochemical cell or a supercapacitor and a method of producing it”, U.S. Patent No.5,811,205 (1998).
[6] T. Michot, A. Nishimoto, and M. Watanabe, “Electrochemical properties of polymer gel electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer”, Electrochim. Acta, 45, 1347-1360 (2000).
[7] F. Boudin, X. Andrieu, C. Jehoulet, and I. I. Olesen, “Microporous PVdF gel for lithium-ion batteies”, J. Power Sources, 81/82, 804-807 (1999).
[8] A. Du Pasquier, P. C. Warren, D. Culver, A. S. Gozdz, G. G. Amatucci, and J. M. Tarascon, “Plastic PVDF-HFP electrolyte laminates prepared by a phase-inversion process”, Solid State Ionics, To be published.
[9] J. Y. Song, Y. Y. Wang, and C. C. Wan, “Conductivity study of porous plasti-cized polymer electrolytes based on poly(vinylidene fluoride): a comparison with polypropylene separators”, J. Electrochem. Soc., To be published.
[10] A. Bottino, G. Capannelli, S. Munari, and A. Turturro, “Solubility parameters of poly(vinylidene fluoride)”, J. Polym. Sci., Part B: Polym. Phys., 26, 785 (1988).
==========
Chapter 5
==========
[1] A. Funabiki, M. Inaba, Z. Ogumi, S.-I. Yuasa, J. Otsuji, and A. Tasaka, “Im-pedance study on the electrochemical lithium intercalation into natural graphite powder”, J. Electrochem. Soc., 145, 172-178 (1998).
[2] D. Aurbach, B. Markovsky, M. D. Levi, E. Levi, A. Schechter, M. Moshkovich, and Y. Cohen, “New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries”, J. Power Sources, 81-82, 95-111 (1999).
[3] C. R. Yang, J. Y. Song, Y. Y. Wang, and C. C. Wan, “Impedance spectroscopic study for the initiation of passive film on carbon electrodes in lithium ion bat-teries”, J. Appl. Electrochem., 30, 29-34 (2000).
[4] B. Markovsky, M. D. Levi, and D. Aurbach, “The basic electroanalytical be-havior of practical graphite-lithium intercalation electrodes”, Electrochim. Acta, 43, 2287-2304 (1998).
[5] D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, “On the corelation between surface chemistry and performance of graphite negative electrodes for Li ion batteries”, Electrochim. Acta., 45, 67-86 (1999).
[6] Y. C. Chang and H. J. Sohn, “Electrochemical impedance analysis for lithium ion intercalation into graphitized carbons”, J. Electrochem. Soc., 147, 50-58 (2000).
[7] J. R. Dahn, A. K. Sleigh, H. Shi, B. M. Way, W. J. Weydanz, J. N. Reimers, Q. Zhong, and U. von Sacken, “Carbon and graphites as substitutes for the lithium anode”, in G. Pistoia Ed., Lithium Batteries: New Materials, Developments and Perspectives, Elsevier, Amsterdam, 1994, p.1.
[8] T. Ohzuku, Y. Iwakoshi, K. Sawai, “Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative elec-trode for a lithium ion (shuttlecock) cell”, J. Electrochem. Soc., 140, 2490-2498 (1993).
[9] M. D. Levi and D. Aurbach, “The mechanism of lithium intercalation in graph-ite film electrodes in aprotic media. Part I. High resolution slow scan rate cy-clic voltammetric studies and modeling”, J. Electroanal. Chem., 421, 79-88 (1997).
[10] K. M. Abraham, H. S. Choe, and D. M. Pasquariello, “Polyacrylonitrile elec-trolyte-based Li ion batteries”, Electrochim. Acta., 43, 2399-2412 (1998).
==========
Chapter 6
==========
[1] E. Karden, S. Buller, and R. W. De Doncker, “A method for measurement and interpretation of impedance spectra for industrial batteries”, J. Power Sources, 85, 72-78 (2000).
[2] G. Nagasubramanian, “Two- and three-electrode impedance studies on 18650 Li-ion cells”, J. Power Sources, 87, 226-229 (2000).
[3] A. Funabiki, M. Inaba, Z. Ogumi, S. I. Yuasa, J. Otsuji, and A. Tasaka, “Im-pedance study on the electrochemical lithium intercalation into natural graphite powder”, J. Electrochem. Soc., 145, 172-178 (1998).
[4] E. Barsoukov, J. H. Kim, J. H. Kim, C. O. Yoon, and H. Lee, “Effect of low-temperature conditions on passive layer growth on Li intercalation materi-als. - In situ impedance study”, J. Electrochem. Soc., 145, 2711-2717 (1998).
[5] Y. C. Chang and H. J. Sohn, “Electrochemical impedance analysis for lithium ion intercalation into graphitized carbons”, J. Electrochem. Soc., 147, 50-58 (2000).
[6] N. A. Hampson, S. A. G. R. Karunathilaka, and R. Leek, “The impedance of electrical storage cells”, J. Appl. Electrochem., 10, 3-11 (1980).
[7] 宋詩哲,「腐蝕電化學研究方法」,第七章,化學工業出版社,北京,1988。
[8] J. T. Müller, P. M. Urban, and W. F. Hölderich, “Impedance studies on direct methanol fuel cell anodes”, J. Power Sources, 84, 157-160 (1999).
[9] R. Wiart, “Elementary steps of electrodeposition analysed by means of imped-ance spectroscopy”, Electrochim. Acta, 35, 1587-1593 (1990).
[10] D. A. Harrington and B. E. Conway, “ac Impedance of faradaic reactions in-volving electrosorbed intermediates – I. Kinetic theory”, Electrochim. Acta, 32, 1703-1712 (1987).
[11] R. Takasu, K. Sekine, and T. Takamura, “Faradaic adsorption of Li on carbon. A novel concept for the capacity of the anode of the Li-ion secondary batter-ies”, J. Power Sources, 81-82, 224-228 (1999).
[12] S. A. G. R. Karunathilaka, R. Barton, M. Hughes, and N. A. Hampson, “Faradaic impedance measurements of small magnitudes encountered in high capacity electrical storage cells”, J. Appl. Electrochem., 15, 251-257 (1985).
[13] F. Huet, “A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries”, J. Power Sources, 70, 59-69 (1998).
==========
Appendix
==========
[1] J. R. Macdonald, Impedance Spectroscopy – emphasizing solid materials and systems, John Wiley & Sons, New York, USA (1987).
[2] P. G. Bruce, “Electrical measurements on polymer electrolytes”, in Polymer Electrolyte Reviews ¾1, J. R. MacCallum and C. A. Vincent, Editors, p.237-274, Elsevier, London, UK (1987).
[3] 劉永輝,「電化學測試技術」,第五章,北京航空學院出版社,北京,1987。
[4] 宋詩哲,「腐蝕電化學研究方法」,第七章,化學工業出版社,北京,1988。
[5] R. D. Armstrong and M. Todd, “Interfacial electrochemistry”, in Solid State Electrochemistry, P. G. Bruce, Editor, p.264-291, Cambridge Univ. Press, Cambridge, UK (1995).