研究生: |
蔡秝凱 Li-Kai Tsai |
---|---|
論文名稱: |
正交性複合材料中裂縫前端的微觀尺度應力強度因子 The Micro-Scale Stress Intensity Factor around the Crack Tip in Orthotropic Composites |
指導教授: |
蔣長榮
Chun-Ron Chiang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 複合材料 、正交性複合材料 、裂縫 、微觀尺度分析 、應力強度因子 、無因次應力強度因子 |
外文關鍵詞: | Composite Materials, Orthotropic Composites, Crack, Micro-Scale Analysis, Stress Intensity Factor, Dimensionless Stress Intensity Factor, KI, SIF |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
應力強度因子(Stress Intensity Factor)K為一評估材料強度的重要指標,在本文中我們假定在巨觀下正交性複合材料(Orthotropic Composite Materials)的應力強度因子為1來求相對微觀尺度下鈍化型裂縫前端位於基材與纖維各分析點處的無因次應力強度因子K。我們以工程分析軟體ANSYS與Matlab來輔助我們模擬分析非均質性材料的破裂問題,並由已知結果的正確解先確定有限元素模型的合理性,然後再以兩種不同的數值步驟來求得K值。我們發現裂縫位於彈性係數較大的纖維內將比位於彈性係數較小的基材內有較大的K值,也由此可知複合材料大部分的應力均由纖維所承受。
The stress intensity factor (S.I.F) has widely been used in the evaluation of material strength in the presence of a crack. When a crack in a composite material is treated as a crack in a homogeneous anisotropic material, the derived S.I.F can only be used in characterizing the material properties at macroscopic scales. To characterize the material behavior at microscopic scales, the presence of the inhomogeneities around the crack tip must be taken into consideration. In this thesis, an idealized case for a fibrous composite is studied. The crack is assumed to be normal to the fiber direction and subjected to Mode-I loading. To avoid numerical difficulty, the crack tip is taken to be rounded with a finite radius of curvature. The near-tip stress distribution at the microscopic scale is determined by ANSYS and Matlab, then the associated microscopic S.I.Fs are extracted by two different numerical approaches. We have found that the larger modulus of elasticity in the fiber has higher S.I.Fs than the smaller one in the matrix. Clearly, most of stress is supported by fibers in a composite material. It is concluded that for the same macro-S.I.Fs, the micro-S.I.Fs may be significantly different depending on the crack tip position and the elastic properties of the constituent phases of the composite.
1.D. Broek著,陳文華、張士欽合譯,基本工程破裂力學,世界學術
譯著,國立編譯館出版,台北市,1995。
2. G. M. Boyd, “Fracture Design Practices For Ship
Structures,” in H. Liebowitz(ed.), Fracture-An Advanced
Treatise: Volume V Fracture Design of Structures, pp. 383-
470, Academic Press, New York and London, 1969.
3. V. F. Zackay, W. W. Gerberich, and E. R. Parker,
“Structural Modes of Fracture,” in H. Liebowitz(ed.),
Fracture-An Advanced Treatise: Volume I Microscopic and
Macroscopic Fundamentals, pp. 395-440, Academic Press,
New York and London, 1968.
4. 洪慶章、謝忠祐、賴育良、劉清吉、陳義坤、郭嘉源編著,有限
元素分析基礎篇ANSYS與Matlab,夸克工作室編輯,知城數位科技
股份有限公司出版,台北市,2001。
5. A. A. Griffith, “The Phenomena of Rupture and Flow in
Solid,” Philosophical Transactions of the Royal Society,
221A, pp. 163-198, 1920.
6. G. C. Sih, and H. Liebowitz, “Mathematical Theories of
Brittle Fracture,” in H. Liebowitz (ed.), Fracture-An
Advanced Treatise: Volume II Mathematical Fundamentals,
pp. 67-190, Academic Press, New York and London, 1968.
7. R. F. Gibson, Principles of Composite Material
Mechanics, McGraw-Hill, Inc. International Editions,
1994.
8. M. D. Snyder, and T. A. Cruse, “Boundary-Integral
Equation Analysis of Cracked Anisotropic Plates,”
Internal Journal of Fracture, Vol. 11, pp. 315-328, 1975.
9.M. E. Waddoups, J. R. Eisenmann, and B. E. Kaminski,
“Macroscopic Mechanics of Advanced Composite Materials,”
Journal of Composite Materials, Vol. 5, pp. 446-454, 1971.
10.G. C. Sih, and E. P. Chen, “Fracture Analysis of
Unidirectional Composite,” Journal of Composite
Materials, Vol. 7, pp. 230-244, 1973.
11.M. Creager, and P. C. Paris, “Elastic Field Equations
for Blunt Cracks with reference to Stress Corrosion
Cracking,” International Journal of Fracture, Vol. 3,
pp. 247-252, 1967.
12.J. P. Benthem, “Stress in the Region of Rounded
Corners,” International Journal of Solids and
Structures, Vol. 23, pp. 239-252, 1987.
13.G. C. Sih, P. C. Paris, and G. R. Irwin, “On Cracks in
Rectilinearly Anisotropic Bodies,” International
Journal of Fracture, Vol. 1, pp. 189-302, 1965.
14.C. R. Chiang, “Kinked Cracks in an Anisotropic
Material,” Engineering Fracture Mechanics, Vol. 39, pp.
927-930, 1991.
15.C. R. Chiang, “The Stress Field for a Blunt Crack in an
Anisotropic Material,” International Journal of
Fracture, Vol. 68, R41-R46, 1994. (and addendum in
International Journal of Fracture, Vol. 70, R99, 1995.)
16.S. Parhizgar, L. W. Zachary, and C. T. Sun,
“Application of the principles of linear fracture
mechanics to the composite materials,” International
Journal of Fracture, Vol. 20, pp. 3-15, 1982.
17.C. R. Chiang, “The Elastic Stress Fields near Blunt
Crack Tips in Orthotropic Materials,” 第十六屆機械工程研
討會論文集,pp. 366-372, 1999.
18.盧廷鉅,“含孔複材疊層板應力分析─有限元素法解”,碩士論
文,國立清華大學,1993。
19.R. D. Cook, D. S. Malkus, and M. E. Plesha, Concepts and
Application of Finite Element Analysis, 3th ed., John
Wiley and Sons, Inc., 1989.
20.C. R. Chiang, “On The Stress Intensity Factors of
Cracks Near an Interface Between Two Media,”
International Journal of Fracture, Vol. 47, R55-R58,
1991.
21.陳俊達,“正交疊層板[90]層橫向裂縫的微觀應力分析”,碩士
論文,國立清華大學,2003。
22.C. R. Chiang, “On Stress Concentration Factors In
Orthotropic Materials,” Journal of the Chinese
Institute of Engineers, Vol. 22, No. 3, pp. 301-305,
1999.