簡易檢索 / 詳目顯示

研究生: 黃惠琪
Hui-Chi Huang
論文名稱: 新型材料於仿生感測器及光催化之應用
指導教授: 李育德
Yu-Der Lee
陳信龍
Hsin-Lung Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 181
中文關鍵詞: 仿生感測器分子拓印微分脈衝法微影製程乙類促效劑二氧化鈦奈米碳球
外文關鍵詞: biomimetic sensors, molecular imprinting, differential pulse voltammetry, lithography, albuterol, titanium dioxide, carbon nanocapsules
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    本論文研究主要切割為仿生感測器與奈米碳球衍生物之應用兩部分。結合分子拓印光阻劑、微影製程及電化學訊號擷取系統,分子拓印修飾之超微仿生感測器已被開發。另一方面,二氧化鈦奈米粒子已成功承載於中空及包鐵奈米碳球上,並完成光觸媒與光電池的評估。
    分子拓印型光阻劑由於穩定性佳、可與多樣的模版分子形成官能基互補之複合物、彌補生物辨識層的不足外,更重要的是其具備微影功能,方便修飾超微電極,利於發展攜帶式及植入式生物晶片。研究中主要合成降冰片烯系列及壓克力兩大系列分子拓印光阻劑。Albuterol於降冰片烯拓印電極之波峰訊號可達非拓印電極的八倍,但隨著電位掃瞄的次數增加,修飾層會逐漸澎潤脫落,而無法應用於超微晶片上。壓克力系列功能性高分子因具有長鏈醇基,故可安定附著於電極的表面,不會隨著電位掃瞄的過程而脫落。調整壓克力系列光阻劑配方比例與微影參數,可得最小線寬約20 μm。Albuterol於壓克力拓印晶片之波峰電流最大可為非拓印晶片的15倍,且由clenbuterol與terbutaline於純白金晶片(或電極)、壓克力拓印晶片(或電極)、壓克力非拓印晶片(或電極)與玻璃態碳電極再結合的程度,可發現壓克力拓印晶片(或電極)對albuterol具有選擇性。掃瞄式電子顯微鏡與原子力顯微鏡觀察的結果顯示拓印修飾層的表面比非拓印修飾層粗糙且多孔。壓克力功能性高分子與albuterol摻混的氫譜則顯示兩者間確實產生特殊之作用力,真實的立體構形得進一步利用分子模擬來探究。此外,在拓印晶片上,albuterol的氧化訊號與其濃度在區間1-50 μM與100-200 μM呈現良好之線性關係與再線性。
    奈米碳球由多層封閉石墨層球殼所組成,其中心因可填入多種金屬,而衍生出多樣的應用。研究中我們利用簡單的溶膠凝膠反應,將二氧化鈦承載於中空及包鐵奈米碳球上。由高解析穿透式電子顯微鏡圖片及表面元素分析得知二氧化鈦以表面成核與成長的方式承載上中空奈米碳球,與承載上包鐵奈米碳球之異相凝結的方式不同。X光繞射圖譜可知承載上之二氧化鈦皆為銳鈦礦晶相。二氧化鈦承載上中空及包鐵奈米碳球之反射式紫外光-可見光吸收曲線幾乎遵循純奈米碳球之吸收曲線。一氧化氮光催化測試顯示二氧化鈦承載於中空及包鐵之奈米碳球有助於光催化效率的提高。另一方面,二氧化鈦承載上中空奈米碳球的含量只需為純二氧化鈦的0.07倍,即可得到相同降低共軛高分子螢光放射的強度。因此我們推測二氧化鈦與奈米碳球間應存在電荷轉移,可使產生之電子電洞對有效分離,進而提高光催化效率、降低共軛高分子螢光的釋出。由於包鐵奈米碳球良好的光催化效率,且封閉石墨層可有效保護鐵粒子使其長效具有磁性,將有助於光催化後的再回收,避免二次污染。


    Abstract

    Combining molecularly imprinted photoresists (MIPhs), photolithography and electrochemical techniques, a multi-array sensor using MIPhs as the recognition element has been fabricated. Two kinds of MIPhs, norbornene and acrylic MIPhs, have been developed in this study. In comparison with MIPhs using norbornene copolymers as the functional polymers, the acrylic MIPh could adhere strongly to Pt surface and has a good resolution of 20 μm. Acrylic MIPhs were utilized to construct MIPh-based chips, which can discriminate albuterol from the interfering analogies, such as clenbuterol and terbutaline. Excellent selectivity toward these analytes was obtained for the molecularly imprinted chips as compared to molecularly non-imprinted chips, bare Pt chips and glassy carbon electrodes. Furthermore, the peak currents of albuterol measured on molecularly imprinted chips have good linear relations with its concentrations in the two ranges of 1 μM to 50 μM with the correlation coefficient (R) of 0.9995, and 100 μM to 200 μM with R of 0.9999 by differential pulse voltammetry. The surface morphologies of molecularly imprinted and non-imprinted layers observed by scanning electron microscope and atomic force microscope displayed significantly different features. Because of small size, light weight and high specificity towards the template molecule, the multi-array sensor developed in this work is potentially useful for determining trace electroactive species either in vitro or in vivo.

    In the other part, TiO2 has been successfully immobilized on carbon nanocapsules (CNC) and Fe-filled CNC (Fe-CNC) using simple sol-gel methods. The high resolution TEM images indicated that the immobilization of TiO2 on Fe-CNC was driven primarily by heterogeneous coagulation, whereas surface nucleation and growth was the dominant mechanism for immobilizing TiO2 on acid-functionalized hollow CNC. The TiO2 immobilized on both CNC and Fe-CNC exhibited anatase phase as revealed by the X-ray diffraction patterns. In comparison with free TiO2, TiO2-coated CNC and TiO2-coated Fe-CNC displayed a good performance in the removal of NO gas under UV exposure. The TiO2-coated CNC exhibited effective quenching on the emission of a light-emitting conjugated polymer. This may imply that TiO2 immobilized on hollow CNC or Fe-CNC could promote the charge transfer for effective photodegradation of NO and quenching of the emission from conjugated polymer. Due to the advantages of easy recycling and good photocatalytic efficiency, the novel magnetic photocatalyst developed here has the potential in photocatalytic applications for pollution prevention.

    目錄 中文摘要---------------------------------------------------I Abstract--------------------------------------------------IV 誌謝------------------------------------------------------VI 目錄-----------------------------------------------------VII 圖目錄-----------------------------------------------------X 表目錄--------------------------------------------------XVII 第一章、緒論 1 1-1前言 1 1-1-1分子拓印型光阻劑於仿生感測器之應用 1 1-1-2二氧化鈦承載上中空及包鐵奈米碳球於光催化之應用 3 1-2分子拓印的基本原理 4 1-3有效的辨識基及其相關研究 8 1-4分子拓印聚合物的種類與製備 10 1-5分子拓印聚合物之特色與應用 18 1-5-1分子拓印聚合物的特色 18 1-5-2分子拓印聚合物的應用 18 1-6乙類促效劑(β-agonists) 28 1-7奈米碳球 30 1-7-1中空及包金屬奈米碳球之基礎結構 30 1-7-2中空及包金屬奈米碳球之製備方法 33 1-8二氧化鈦 38 1-8-1二氧化鈦之基礎結構與物性 38 1-8-2二氧化鈦之製備方法 41 1-8-3二氧化鈦於光催化之應用 45 1-9研究動機與目的 50 1-9-1分子拓印型光阻劑於仿生感測器之應用 50 1-9-2二氧化鈦承載上中空及包鐵奈米碳球於光催化之應用 52 參考文獻 53 第二章、分子拓印型光阻劑於仿生感測器之應用 60 2-1實驗藥品與設備 60 2-1-1實驗藥品 60 2-1-2實驗設備與檢測 61 2-1-3實驗方法 67 2-2-2降冰片烯系列 76 2-2-2壓克力系列 91 參考文獻 126 第三章、二氧化鈦承載上中空及包鐵奈米碳球於光催化之應用 127 3-1實驗藥品與設備 127 3-1-1實驗藥品 127 3-1-2實驗設備與檢測 127 3-1-3實驗方法 132 3-2結果與討論 138 3-2-1二氧化鈦之物性分析 138 3-2-2酸官能化奈米碳球之物性分析 142 3-2-3二氧化鈦承載上中空奈米碳球之物性分析 148 3-2-4二氧化鈦承載上包鐵奈米碳球之物性分析 157 3-2-5光催化活性檢測 166 3-2-6光電池元件檢測 169 參考文獻 174 第四章、總結 176 4-1分子拓印型光阻劑於仿生感測器之應用 176 4-2二氧化鈦承載上中空及包鐵奈米碳球於光催化之應用 178 個人簡歷 180

    第一章之參考文獻

    1.B. Sellergren (Eds.), Molecularly imprinted polymers: man-made mimics of antibodies and their applications in analytical chemistry, 1st ed. Elsevier, UK, 2001.

    2.M. Komiyama, T. Takeuchi, T. Mukawa, H. Asanuma, Molecular imprinting from fundamentals to applications, 1st ed. Wiley-Vch, Germany, 2003.

    3.S. Y. Lu, C. H. Chang, C. H. Yu, H. L. Chen, Y. H. Lo, J. Mater. Res., 20(2005)1523.

    4.A. Hanprasopwattana, T. Ricker, A. G. Sault, A. K. Datye, Catal. Lett., 45(1997)165.

    5.A. R. Boccaccini, P. Karapappas, J. M. Marijuan, J. Mater. Sci., 39(2004)851.

    6.S. W. Lee, W. M. Sigmund, Chem. Commun., 6(2003)780.

    7.A. Jitianu, T. Cacciaquerra, R. Benoit, S. Delpeux, F. Bequin, S. Bonnamy, Carbon, 42(2004)1147.

    8.S. H. Lee, S. Pumprueg, B. Moudgil, W. Sigmund, Colloid Surface B., 40(2005)93.

    9.T. W. Ebbesen, carbon nanotubesn preparation and properties, CRC press, 1997, 1st, p.264.

    10.C. Malitesta, I. Losito, P. G. Zambonin, Anal. Chem., 71(1999)1366.

    11.S. A. Piletsky, E. V. Piletskaya, T. A. Sergeyeva, T. L. Panasyuk, A. V. El'skaya, Sensors and actuators B-Chem., 60(2004)216.

    12.S. Y. Huan , G. L. Shen , R. Q. Yu , Electroanalysis, 16(2004)1019.

    13.G. Wulff, R. G. Einsler, A. Sarhan, Makromol. Chem., 178(1997)2817.

    14.G. Wulff, J. Haarer, Macromol. Chem., 192(1991)1329.

    15.R. Arshady, K. Mosbach, Macromol. Chem., 182(1981)687.

    16.K. Haupt, A. Dzgoev, K. Mosbach, Anal. Chem., 70(1998)628.

    17.M. J. Whitcombe, M. E. Rodriguez, P. Villar, E. N. Vulfson, J. Am. Chem. Soc., 17(1995)7105.

    18.J. Svenson, Z. Ning , U. Fohrman, I. A. Nicholls, Anal. Lett., 38(2005)57.

    19.K. J. Shea, D.Y. Sasaki, J. Am. Chem. Soc., 113(1991)4109.

    20.X. Dong, H. Sun, X. Lu, H. Wang, S. Liu, N. Wang, Analyst, 127(2002)1427.

    21.M. Quaglia, K. Chenon, A. J. Hall, E. D. Lorenzi, B. Sellergren, J. Am. Chem. Soc. 123(2001)2146.

    22.J. O'Mahony, A. Molinelli, K. Nolan, M. R. Smyth, B. Mizaikoff, Biosens. Bioelectron., 20(2005)1884.

    23.M. J. Whitcombe, L. Martin, E. N. Vulfson, Chromato., 47(1998)457.

    24.H. Y. Aboul-Enein, M. I. El-Awady, C. M. Heard, Pharmazie, 57(2002)169.

    25.Z. Y. Jiang, Y. X. Yu, H. Wu, J. Membr. Sci., 280(2006)876.

    26.A. Kubo, H. Shinmori, T. Takeuchi, Chem. Lett., 35(2006)588.

    27.C. Baggiani, G. Giraudi, F. Trotta, C. Giovannoli, A. Vanni, Talanta, 51(2000)71.

    28.C. Y. Hsu, H. Y. Lin, J. L. Thomas, T. C. Chou, Nanotechnology, 17(2006)S77.

    29.E. Oral, N. A. Peppas, J. Biomed. Mater. Res. Part A, 78A(2006)205.

    30.M. Komiyama, T. Takeuchi, T. Mukawa, H. Asanuma, Molecular imprinting from fundamentals to applications, 1st ed. Wiley-Vch, Germany, 2003, p23.

    31.M. Komiyama, T. Takeuchi, T. Mukawa, H. Asanuma, Molecular imprinting from fundamentals to applications, 1st ed. Wiley-Vch, Germany, 2003, p.24.

    32.K. Hosoya, K. Yoshizako, N. Tanaka, K. Kimsta, T. Araki, J. Haginaka, Chem. Lett., 8(1994)1437.

    33.N. P. Moral, A. G. Mayes, Biosens. Bioelectron, 21(2006)1798.

    34.T. H. Kim, K. C. Do, H. Cho, T. Y. Chang, J. Y. Chang, Macromolecules, 38(2005)6423.

    35.C. Ravelet , E. Peyrin, J. Sep. Sci., 29 (2006)1322.

    36.B. Sellergren, Anal. Chem., 66(1994)1578.

    37.W. M. Mullett, E. P. C. Lai, Microchem. J., 61(1999)143.

    38.A. Kugimiya, T. Takeuchi, Anal. Chim. Acta, 395(1999)251.

    39.L. I. Andersson, A. Paprica, T. Arvidsson, Chromatographia, 46(1997)57.

    40.A. Kugimiya, H. Yoneyama, T. Takeuchi, Electroanalysis, 12(2000)1322.

    41.E. Hedborg, F. Winquist, I. Lundström, L. I. Andersson, K. Mosbach, Sensor Actuat. A–Phys., 37–38(1993)796.

    42.R. S. Hutchins, L.G. Bachas, Anal. Chem., 67(1995)1654.

    43.T. A. Sergeyeva, S. A. Piletsky, A. A. Brovko, E. A. Slichenko, L. M. Sergeeva, A. V. El’skaya, Anal. Chim. Acta, 392(1999)105.

    44.K. C. Ho, W. M. Yeh, T. S. Tung, J. Y. Liao, Anal. Chim. Acta, 542(2005)90.

    45.H. C. Huang, C. I. Lin, A. K. Joseph, Y. D. Lee, J. Chromatogr. A, 1027(2004)263.

    46.T. Panayuk, V. M. Mirsky, S. A. Piletsky, O. S. Wolfbeis, Anal. Chem., 71(1999)4609.

    47.M. Zayats, M. Lahav, A. B. Kharitonov, I. Willner, Tetrahedron, 58(2002)815.

    48.A. Ersoz, A. Denizli, A. Ozcan, R. Say, Biosen. & Bioelec., 20(2005)2197.

    49.R. Lucklum, P. Hauptmann, Anal. Bioanal. Chem., 384(2006)667.

    50.G. Sauerbrey, Z. F. Physik, 155(1959)206.

    51.C. D. Liang, H. Peng, A. H. Zhou, L. H. Nie, S. Z. Yao, Anal. Chim. Acta, 415(2000)135.

    52.T. Kobayashi, Y. Murawaki, P. S. Reddy, M. Abe, N. Fujii, Anal. Chim. Acta, 435(2001)141.

    53.D. Kriz, O. Ramstrom, A. Svensson, K. Mosbach, Anal. Chem., 67(1995)2142.

    54.L. M. Kindschy, E. C. Alocilja, Trasa. Asae, 47(2004)1375.

    55.E. M. Kallergis, E. G. Manios, E. M. Kanoupakis, S. E. Schiza, H. E. Mavrakis, N. K. Klapsinos, Vardas Pe Chest, 127(2005)2057.

    56.Curr. Opin. Pulm. Med., 6(2000)43.

    57.A. A. Fisher, M. W. Davis, D. A. McGill, Annal. Pharma., 38(2004)2045.

    58.M. A. van-Baak , O. M. de-Hon, F. Hartgens, H. Kuipers, Internatio. Sport. Medi., 25(2004)533.

    59.Olympic Movement Antidoping-Code Appendix A, IOC Medical Commission, Lausanne, Switzerland (2003).

    60.C. Schweizer, M. Saugy, M. Kamber, Clin. J. Sport Med., 14(2004)312.

    61.R. Ventura, J. Segura, R. Berges, K. D. Fitch, A. R. Morton, S. Berruezo, C. Jimenez, Ther. Drug Monit., 22(2000)277.

    62.S. V. Erram, C. B. Fanska, M. Asif, J. Pharm. Biomed. Anal., 40(2006)864.

    63.D. Satinsky, R. Karlicek, A. Svoboda, Anal. Chim. Acta, 455(2002)103.

    64.Y. M. Issa, A. F. Shoukry, R. M. El-Nashar, J. Pharm. Biomed. Anal. 26(2001)379.

    65.G. G. Mohamed, M. S. Khalil, M. A. Zayed, M. A. E. El-Shall, J. Pharm. Biomed. Anal., 28(2002)1127.

    66.M. I. Saleh, Y. M. Koh, S. C. Tan, A. L. Aishah, Analyst 125(2000)1569.

    67.T. W. Ebbesen ed., carbon nanotubes: preparation and properties, CRC press (1997), p249.

    68.P. J. F. Harris ed., carbon nanotubes and related structures, Cambridge university press (1999), p.156.

    69.Y. Saito, T. Yoshikawa, M. Okuda, N. Fujimoto, S. Yamamuro, K. Wakoh, K. Sumiyama, K. Suzuki, A. Kasuya, Y. Nishina, Chem. Phys. Lett., 212(1993)379.

    70.Y. Saito, Paper 1372, Proc. 185th Meeting of the Electrochemical Society, Fullerene Symp., San Francisco (1994).

    71.P. M. Ajayan, S. Iijima, Nature 358(1992)23.

    72.G. L. Hwang, US Patent Application, 20030159917 ( 2003).

    73.T. W. Ebbesen ed., carbon nanotubes: preparation and properties, CRC press (1997).

    74.Y. Saito, T. Yoshikawa, M. Okuda, M. Ohkohchi, Y. Ando, A. Kasuya, Y. Nishina, Chem. Phys. Lett., 209(1993)72.

    75.K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, C. B. Huffman, R. E. Smalley, Chem. Phys. Lett., 282(1998)429.

    76.P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science, 265(1994)1212.

    77.S. B. Sinnott, R. Andrews., D. Qian., A. M. Rao., Mao Z, E. C. Dickey, F. Derbyshire, Chem. Phys. Lett., 315(1999)25.

    78.Y. Li, T. J. White, S. H. Lim, J. Solid State Chem., 177(2004)1372.

    79.P. Mohapatra, T. Mishra, K. M. Parida, Appl. Catal. A-Gen., 310(2006)183.

    80.J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, Q. J. Zhang, J. Photochem. Photobiol. A-Chem., 182(2006)121.

    81.M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev., 95(1995)69.

    82.C. Y. Wang, C. Bottcher, D. W. Bahnemann, J. K. Dohrmann, J. Mater. Chem., 13(2003)2322.

    83.N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, J. Photochem. Photobiol. A-Chem., 85(1995)247.

    84.R. A. Williams, Innovation in physical separation technologies, Falmouth, UK, 1997, vol. I of II, p.231.

    85.Y. Gao, B. H.Chen, H. L. Li, Y. X. Ma, Mater. Chem. Phys., 80(2003)348.

    86.D. Beydoun, R. Amal, J. Scott, G. Low, S. McEvoy, Chem. Eng. Technol., 24(2001)745.

    87.D. Beydoun, R. Amal, G. K. C. Low, S. McEvoy, J. Phys. Chem. B, 104(2000)4387.

    88.F. Chen, J. C. Zhao, Catal. Lett., 58(1999)245.

    89.S. Watson, J. Scott, D. Beydoun, R. Amal, J. Nanopart. Res., 7(2005)691.

    90.J. S. Salafsky, Phys. Rev. B, 59(1999)10885.

    91.B. Sun, E. Marx, N. C. Greenham, Nano Lett., 3(2003)961.

    92.A. C. Arango, L. R. Johnson, V. N. Bliznyuk, Z. Schlesinger, S. A. Carter, H. H. Horhold, Adv. Mater. 12(2000)1689.

    93.H. Ago, K. Petritsch, M. S. P. Shaffer, A. H. Windle, R. H. Friend, Adv. Mater.,11(1999)1281.

    94.Z. Li, M.Day, J. F. Ding, K. Faid, Macromolecules, 38(2005)2620.

    第二章之參考文獻

    1.A. J. Bard, L. R. Faulkner, Electrochemical methods fundamentals and applications, 2nd ed. John Wiley & Sons, Inc, 2001.

    2.J. C. Grandguillot, F. Rouessac, Synthesis 8 (1979) 607.

    3.J. G. Hamilton, Polymer 39 (1998) 1669.

    4.L. Delaude, A. Demonceau, A. F. Noels, Macromolecules 32 (1999) 2091.

    5.V. A. Ebrahimi, D. A.Corry, J. G. Hamilton, J. M. Thompson, J. J. Rooney, Macromolecules 33 (2000) 717.

    6.J. Kim, B. Lee, H. Yun, and Y. Kwon, Chem. Lett., 4 (2000) 414.

    7.G. Odian eds., Principles of polymerization, 4th John Wiley & Sons., New York, 2004.

    8.S. Gutierrez-Fernandez, M. J. Lobo-Castanon, A. J. Miranda-Ordieres, P. Tunon-Blanco, G. A. Carriedo, F. J. Garcia-Alonso, J. I. Fidalgo, Electroanalysis, 13(2001)1399.

    9.N. Yilmaz, S. A. Ozkan, B. Uslu, Z. Senturk, I. Biryol,Turk. J. Chem., 2(1998)175.

    10.A. P. Ijzerman, T. Bultsma, H. Timmerman, J. Zaagsma, J. Pharm. Pharmacol., 36(1983)11.

    11.J. F. Desaphy, S. Pierno, A. D. Luca, P. Didonna, D. C. Camerino, Mol. Pharmacol., 63(2003)659.

    12.Olympic Movement Antidoping-Code Appendix A, IOC Medical Commission, Lausanne, Switzerland (2003).

    第三章之參考文獻

    1.G. L. Hwang, US Patent Application, 20030159917 (2003).

    2.C. C. Chiu, K. F. Lin, H. L. Chou, J. Polym. Sci. Part A: Polym. Chem., 41(2003)2108.

    3.B. D. Cullity, S. R. Stock, Elements of X-ray diffraction, 3rd Prentice Hall, chapter 3, p.92.

    4.Components of the DRA-CA-30I sphere accessory for CARY 3 UV-vis spectrophotometer.

    5.S. Hufner, Photoelectron spectroscopy: principles and applications, 2nd, Springer, chapter 2 (1996).

    6.L. L. Dugan, D. M. Turetsky, C. Du, D. Lobner, M. Wheeler, C. R. Almli, C. K. F. Shen, T. Y. Luh, D. W. Choi, T. S. Lin, Proc. Natl. Acad. Sci., 94(1997)9434.

    7.H. Hiura, T. W. Ebbesen, K. Tanigaki, Adv. Mater. 7(1995)275.

    8.J. Chastain eds., Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, U.S.A.

    9.S. Watson, J. Scott, D. Beydoun, R. Amal, J. Nanopart. Res., 7(2005) 691.

    10.H. K. Park, Y. T. Moon, D. K. Kim, C. H. Kim, J. Am. Ceram. Soc. 79(1996)2727.

    11.S. Banerjee, S. S. Wong, nano lett., 2(2002)195

    12.S. H. Lee, S. Pumprueg, B. Moudgil, W. Sigmund, Colloid Surf. B-Biointerfaces, 40(2005)93.

    13.W. Wang, P. Serp, P. Kalck, J. L. Faria, Appl. Catal. B-Environ., 56(2005)305.

    14.B. D. Yang, K H. Yoon, Synth. Met., 142(2004)21.

    15.B. D. Yang, K H. Yoon, K. W. Chung, Synth. Met. 143(2004)25.

    16.A. Petrella, M. Tamborra, M. L. Curri, P. Cosma, M. Striccoli, P. D. Cozzoli, A. Agostiano, Phys. Chem. B, 109(2005)1554.

    17.A. C. Arango, L. R. Johnson, V. N. Bliznyuk, Z. Schlesinger, S. A. Carter, H. H. Horhold, Adv. Mater., 12(2000)1689.

    18.D. B. Romero, M. Carrard, W. DeHeer, L. Zuppiroli, Adv. Mater., 8(1996)899.

    19.H. Ago, K. Petritsch, M. S. P. Shaffer, A. H. Windle, R. H. Friend, Adv. Mater., 11(1999)1281.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE