研究生: |
謝博楊 Hsieh, Po-Yang. |
---|---|
論文名稱: |
利用超快雷射時間解析光譜研究- 經TOPO處理之PEA2(FAPbBr3)2PbBr4之超快動力學 Ultrafast Dynamics of TOPO-treated PEA2(FAPbBr3)2PbBr4 studied by Ultrafast time-resolved spectroscopy |
指導教授: |
王立邦
Wang, Li-Bang 籔下篤史 Yabushita, Atsushi |
口試委員: |
趙宇強
Chao, Yu-Chiang 李育賢 Lee, Yu-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 39 |
中文關鍵詞: | 時間解析光譜 、超快動力學 、發光二極體 、缺陷鈍化 |
外文關鍵詞: | time-resolved spectroscopy, ultrafast dynamics, LED, surface passivation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用超快雷射時間解析光譜研究- 經TOPO處理之PEA2(FAPbBr3)2PbBr4之超快動力學
研究生:謝博楊 指導教授:王立邦、籔下篤史 博士
國立清華大學物理研究所
中文摘要
鈣鈦礦發光二極體因為其良好的發光效率而備受關注,尤其是RP型態(Ruddlesden–Popper)結構的鈣鈦礦材料,可以有較大的激子束縛能,意味著輻射復合機率比較高,而非輻射的復合機率較低,發光波長也較為相近,所以被視為是有效率的發光二極體材料。然而這類的材料通常會有純度較低而影響發光效率的問題,因此在本實驗中的樣品PEA2(FAPbBr3)2PbBr4中加入表面鈍化劑:氧化三辛基膦(trioctylphosphine oxide),期待期起到降低材料缺陷的影響。
本論文將透過超快時間解析光譜,以紫外光為超短脈衝激發光,可見光為短脈衝探測光,將所探測到的載子動態完整記錄,觀察期衰減率與生命週期。並藉由鹵化物鈣鈦礦中載子密度變化與復合率的公式求解,分析樣品PEA2(FAPbBr3)2PbBr4在加入氧化三辛基膦後的復合機制變化。我們可以觀察到PEA2(FAPbBr3)2PbBr4在經TOPO處理之後的SRH recombination下降了31.76%左右,而此回復機制的生命週期(lifetime)也有顯著的增加,這代表著經過TOPO處理後PEA2(FAPbBr3)2PbBr4受到材料內部缺陷的影響顯著的下降,達到旋塗TOPO層做為缺陷鈍化劑的目的。
Ultrafast Dynamics of TOPO-treated PEA2(FAPbBr3)2PbBr4 studied by Ultrafast time-resolved spectroscopy
Student: Po Yang Hsieh Advisor: Dr. Li Bang Wang,
Dr. Atsushi Yabushita
Department of Physics
National Tsing Hua University
Abstract
Perovskite light-emitting diodes have attracted much attention because of their good efficiency, especially the perovskite materials with RP type(Ruddlesden-Popper) structure, which can have a rather large exciton binding energy, which means higher probability of radiative recombination and lower probability of nonradiative recombination, and the emission wavelength is relatively close, so it’s considered as an efficient light-emitting diode material. However, this kind of materials usually have the problem of low purity which affects the luminous efficiency. Therefore, in this experiment, the sample PEA2(FAPbBr3)2PbBr4 was added with a surface passivation: trioctylphosphine oxide(TOPO), expecting to play a role in reducing surface state.
In this paper, through ultrafast time analysis spectroscopy, we use ultraviolet light as the pump beam, and visible light as the probe beam. And by solving the formula of carrier density change and recombination rate in halide perovskite, the recombination mechanism of PEA2(FAPbBr3)2PbBr4 was analyzed after adding trioctylphosphine oxide. We can observe that the SRH recombination decreased by about 31.76% after TOPO treatment, and the lifetime of this recovery mechanism also increased, which means after TOPO treatment, the effect of material defect decreased, which matches the purpose of spin-coating TOPO layer.
參考文獻
[1] Chenyang Zhao, Dezhong Zhang and Chuanjiang Qin, (2020) Perovskite Light-Emitting Diodes, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academyof Sciences, Changchun 130022
[2] Kai Zhang, Ningning Zhu, Mingming Zhang, Lei Wang and Jun Xing, (2021) Opportunities and challenges in perovskite LED commercialization, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
[3] Dane W. deQuilettes, Susanne Koch, Sven Burke, Rajan K. Paranji, Alfred J. Shropshire, Mark E. Ziffer, and David S. Ginger, (2016) Photoluminescence lifetimes exceeding 8 μs and quantum yields exceeding 30% in hybrid perovskite thin films by ligand passivation. ACS Energy Lett. 1, 438–444.
[4] Xiaolei Yang, Xingwang Zhang, Jinxiang Deng, Zema Chu , Qi Jiang, Junhua Meng, Pengyang Wang, Liuqi Zhang, Zhigang Yin and Jingbi You (2018) Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation
[5] Christian Wehrenfennig, Giles E. Eperon, Michael B. Johnston, Henry J. Snaith, and Laura M. Herz (2014) High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589
[6] Robert J. Stewart, Christopher Grieco, Alec V. Larsen, Joshua J. Maier, and John B. Asbury
(2016) Approaching bulk carrier dynamics in organo-halide perovskite nanocrystalline films by surface passivation. J. Phys. Chem. Lett. 7, 1148–1153
[7] Luis M Pazos-Outón, Monika Szumilo, Robin Lamboll, Johannes M Richter, Micaela Crespo-Quesada, Mojtaba Abdi-Jalebi, Harry J Beeson, Milan Vrućinić, Mejd Alsari, Henry J Snaith, Bruno Ehrler, Richard H Friend, and Felix Deschler (2016) Photon recycling in lead iodide perovskite solar cells. Science 351, 1430–1433
[8]JiaJun Qin, Xiao-Ke Liu, Chunyang Yin, Feng Yao. (2021)Trends in chemistry Volume 3, Issue 1, Pages 34-46
[9] Wei Zou, Renzhi Li, Shuting Zhang, Yunlong Liu, Nana Wang, Yu Cao, Yanfeng Miao, Mengmeng Xu, Qiang Guo, Dawei Di, Li Zhang, Chang Yi, Feng Gao, Richard H. Friend, Jianpu Wang and Wei Huang (2018) Minimising efficiency roll-off in highbrightness perovskite light-emitting diodes. Nat. Commun. 9, 608
[10] Jimmy-Xuan Shen, Xie Zhang, Suvadip Das,E mmanouil Kioupakis, Chris G. Van de Walle (2018) Unexpectedly strong Auger recombination in halide perovskites. Adv. Energy Mater. 8, 1801027
[11] Giles E. Eperon, Erin Jedlicka and David S. Ginger
(2018) Biexciton Auger recombination differs in hybrid and inorganic halide perovskite quantum dots. J. Phys. Chem. Lett. 9, 104–109
[12] M. Tuan Trinh, Xiaoxi Wu, Daniel Niesnera and X.-Y. Zhu (2015) Many-body interactions in photo-excited lead iodide perovskite. J. Mater. Chem. A 3, 9285–9290
[13] Fengrui Hu, Chunyang Yin, Huichao Zhang, Chun Sun, William W. Yu, Chunfeng Zhang, Xiaoyong Wang, Yu Zhang, and Min Xiao (2016) Slow Auger recombination of charged excitons in nonblinking perovskite nanocrystals without spectral diffusion. Nano Lett. 16, 6425–6430
[14] Guichuan Xing, Nripan Mathews, Swee Sien Lim, Natalia Yantara, Xinfeng Liu, Dharani Sabba, Michael Grätzel, Subodh Mhaisalkar and Tze Chien Sum (2014) Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476