研究生: |
康學淳 Kang, Hsueh Chun |
---|---|
論文名稱: |
混合汲極及鍺摻雜結構之矽基板氮化鋁鎵/氮化鎵元件之設計與製作 Design and Fabrication of AlGaN/GaN Devices on Silicon Substrate with Hybrid Drain and Ge-diffusion Structures |
指導教授: |
徐碩鴻
Hsu, Shuo-Hung |
口試委員: |
謝光前
孫健仁 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 高電子遷移率電晶體 、蕭特基二極體 、混合電極 、鍺擴散 、氮化鋁鎵/氮化鎵 |
外文關鍵詞: | HEMTs, Schottky diode, Hybrid electrode, Ge diffusion, AlGaN/GaN |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化鎵材料擁有寬能隙、高臨界電場、高電子飽和速度以及良好的熱傳導特性,因此近年來,氮化鎵高電子遷移率電晶體(GaN-based HEMTs)在高速元件以及高功率元件上的研究議題非常熱門,其中又以成長在矽(Si)基板之氮化鋁鎵/氮化鎵電晶體最為普及,雖然在特性上不如碳化矽(SiC)與藍寶石(sapphire)基板,然而考量到成本以及未來能與CMOS電路做整合,GaN-on-Silicon的研究被視為未來科技的主流之一。
本次論文藉由改變水平及垂直式佈局方式,藉此改善元件在高頻跟高功率上的特性。首先,藉由改變水平佈局以及使用電子束微影的方式微縮源極與汲極的間距,並且使用混合電極的架構,能同時有效提高元件在高頻以及高功率上的特性表現,f_T可達40GHz以上,f_max可達64GHz以上(g_m=187 "mS" ⁄"mm" ,I_d=877 "mA" ⁄"mm" ),並且在閘極與汲極間的崩潰電壓也可以達到39V的特性表現。最後再根據等效模型的建立,藉由模擬的結果方便我們取得改善的內部參數,並藉此調整進一步提高特性的佈局結構。接著藉由改變垂直佈局以及使用鍺擴散的方式,進一步改善在蕭特基能障二極體的導通電壓、漏電流以及崩潰電壓,提高元件在高功率上的特性表現,其中最好的特性表現裡,導通電壓改善了22%、崩潰電壓改善了257%,並且漏電流可以降低約一個數量級,此研究結果可以藉由不改變元件水平主動區面積,亦可以提升在高功率特性上的表現。
Recently, the researches of GaN-based HEMTs for high speed and high power devices become more and more popular owing to its wide band-gap, high critical electric field, high electron saturation velocity, and good thermal conductivity. In addition, the AlGaN/GaN transistor grown on Si substrate gain ground nowadays, although its property may not be as well as on SiC and sapphire substrate. However, GaN-on-Silicon is promising as the one of mainstream technology in the future when considering cost and the capability of CMOS integration.
In this thesis, we improve the characteristics of AlGaN/GaN devices for high frequency and high power applications by changing the layout both horizontally and vertically. First, by using E-beam to scale down the source-drain distance and using the hybrid electrode structure for horizontal layout, we can effectively improve the devices performance for high frequency and high power applications simultaneously, including the f_T up to 40 GHz, the f_max up to 64 GHz, the g_m "of 187 mS" ⁄"mm" , the I_d "of 877mA" ⁄"mm" , and the VBK of 39 V between gate and drain. In addition, we can obtain the intrinsic parameters and alter our layout structures for the better device properties according to the simulation of equivalent circuit model. Second, by using Ge diffusion for vertical layout, we can further improve the turn-on voltage, the leakage current, and the breakdown voltage in SBDs for high power applications. The Von can be improved up to 22%, the VBK can be improved up to 257%, and the leakage current can be suppressed about one order of magnitude. In conclusion, the results indicate that the high power characteristics can be improved without changing the area of horizontal active region.
[1] K. Shinohara, D. Regan, A. Corrion, D. Brown, I. Alvarado-Rodriguez, M. Cunningham, C. Bulter, A. Schmitz, S. Kim, B. Holden, D. Chang, A. Margomenos, M. Micovic, "Deeply-scaled E/D-Mode GaN-HEMTs for Sub-mm-Wave amplifiers and mixed-signal applications." IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pp. 1-4, Oct 2012.
[2] T. F. Chang, C. F. Huang, T. Y. Yang, C. W. Chiu, T. Y. Haung, K. Y. Lee, Feng Zhao, "Low turn-on voltage dual metal AlGaN/GaN Schottky barrier diode." Solid-State Electronics 105 (2015): 12-15.
[3] Ambacher, “Growth and applications of group III-nitrides,” J. Physics D (Applied Physics), vol. 31, pp. 2653-2710, 1998.
[4] L. F. Eastman and U. K.Mishra, “The toughest transistor yet,” IEEE spectrum, 39(5), pp. 28-33, 2002.
[5] B. Gelmont, K. Kim, and M. Shur, “Monte carlo simulation of electron transport in gallium nitride,” J. Appl. Phys., 74 (3), pp. 1818-1821, 1993
[6] B. J. Baliga, “Trends in power semiconductor devices,” IEEE Transaction on Electron Devices, 43(10), pp. 1717-1731, 1996
[7] T. Mimura, "The early history of the high electron mobility transistor (HEMT)." IEEE Trans. Microwave theory and techniques, vol. 50, pp. 780-782, March 2002.
[8] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures." Journal of Applied Physics , vol.85, pp. 3222-3233, May 1999.
[9] Fabio Sacconi, Aldo Di Carlo, P. Lugli, Hadis Morkoc, "Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs." IEEE Transactions Electron Devices, pp. 450-457, March 2001.
[10] Morkoç, Hadis, Roberto Cingolani, and Bernard Gil. "Polarization effects in nitride semiconductor device structures and performance of modulation doped field effect transistors." Solid-State Electronics, vol.43, pp. 1909-1927, 1999 .
[11] Junshuai Xue, Yue Hao, Jincheng Zhang, Jinyu NI, "Effect of high temperature AlN interlayer on the performance of AlGaN/GaN properties." IEEE Electron Devices and Solid-State Circuits, pp. 416-418, 2009.
[12] Lunchun Guo, Xiaoliang Wang, Cuimei Wang, Hongling Xiao, Junxue Ran, Weijun Luo, Xiaoyan Wang, Baozhu Wang, Cebao Fang, Guoxin Hu, "The influence of 1nm AlN interlayer on properties of the Al 0.3 Ga 0.7 N/AlN/GaN HEMT structure." Microelectronics Journal, vol.39, pp. 777-781, January 2008.
[13] Shrestha, Niraj Man, Yiming Li, and Edward Yi Chang. "Simulation study on electrical characteristic of AlGaN/GaN high electron mobility transistors with AlN spacer layer." Japanese Journal of Applied Physics, pp. 04EF08, February 2014.
[14] Bin Lu, L. Piner, Tomas Palacios, "Schottky-drain technology for AlGaN/GaN high-electron mobility transistors." IEEE Electron Device Letters, vol. 31, pp. 302-304, April 2010
[15] Y. W. Lian, Y. S. Lin, H. C. Lu, Y. C. Huang, Shawn S. H. Hsu, "AlGaN/GaN HEMTs on silicon with hybrid Schottky–ohmic drain for high breakdown voltage and low leakage current." IEEE Electron Device Letters, vol. 33, pp.973-975, July 2012.
[16] Gregg H. Jessen, Robert C. Fitch, James K. Gillespie, Glen Via, Antonio Crespo, Derrick Langley, Daniel J. Denninghoff, Manuel Trejo, Eric R. Heller, "Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-gate devices." IEEE Transactions Electron Devices, vol. 54, pp. 2589-2597, 2007.
[17] Y. W. Lian, Y. S. Lin, H. C. Lu, Y. C. Huang, Shawn S. H. Hsu, "Drain E-Field manipulation in AlGaN/GaN HEMTs by Schottky extension technology." IEEE Transactions Electron Devices, vol. 62, pp. 519-524, February 2015.
[18] B. Jacobs, M. C. J. C. M. Kramer, E. J. Geluk, F. Karouta, "Optimisation of the Ti/Al/Ni/Au ohmic contact on AlGaN/GaN FET structures." Journal of Crystal Growth, vol.241, pp. 15-18, 2002.
[19] R. Vetury, N. Q. Zhang, S. Keller, U. K. Mishra, "The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs." IEEE Transactions Electron Devices, vol. 48, pp. 560-566, March 2001.
[20] S. Ohi, T. Kakegami, H. Tokuda, M. Kuzuhara, "Effect of passivation films on DC characteristics of AlGaN/GaN HEMT." IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK), June 2014.
[21] J. Bernat, P. Javorka, A. Fox, M. Marso, H. Luth, P. Kordos, "Effect of surface passivation on performance of AlGaN/GaN/Si HEMTs." Solid-State Electronics, vol. 47, pp. 2097-2103, May 2003.
[22] T. Palacios, S. Rajan, A. Chakraborty, S. Heikman, S. Keller, S. P.DenBaars, and U. K. Mishra, “Influence of the dynamic access resistance in the gm and fT linearity of AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 52, no. 10, pp. 2117–2123, Oct. 2005.
[23] F. Qian, J. H. Leach, and H. Morkoc, “Small signal equivalent circuit modeling for AlGaN/GaN HFET: Hybrid extraction method for determining circuit elements of AlGaN/GaN HFET,” Proc. IEEE, vol. 98, no. 7, pp. 1140–1150, Jul. 2010.
[24] C. Zhou, W. Chen, E. L. Piner, K. J. Chen, "AlGaN/GaN dual-channel lateral field-effect rectifier with punchthrough breakdown immunity and low on-resistance." IEEE Electron Device Letters, vol. 31, pp. 5-7, January 2010.
[25] Moll, Nick, Mark R. Hueschen, and Alice Fischer-Colbrie, "Pulse-doped AlGaAs/InGaAs pseudomorphic MODFETs." IEEE Transactions Electron Devices, vol. 35, pp. 879-886, 1988.
[26] M. F. Romero, Ana Jimenez, Fernando G. P. Flores, Sara M. Horcajo, Fernando Calle, Elias Munoz, "Impact of plasma power discharge on AlGaN/GaN HEMT performance." IEEE Transactions Electron Devices, vol. 59, pp.374-379, 2012.
[27] Domenica Visalli, Marleen Van Hove, Puneet Srivastava, Joff Derluyn, Johan Das, Maarten Leys, Stefan Degroote, Kai Cheng, Marianne Germain, Gustaaf Borghs, "Experimental and simulation study of breakdown voltage enhancement of AlGaN/GaN heterostructures by Si substrate removal."Applied Physics Letters vol. 97, pp. 113501, 2010.
[28] E. B. Treidel, Oliver Hilt, Rimma Zhytnytska, Andreas Wentzel, Chafik Meliani, Joachim Wurfl, Gunther Trankle, "Fast-switching GaN-based lateral power Schottky barrier diodes with low onset voltage and strong reverse blocking." IEEE Electron Device Letters, vol. 33, pp. 357-359, March 2012.
[29] Hidetoshi Ishida, Daisuke Shibata, Manabu Yanagihara, Yasuhiro Uemoto, Hisayoshi Matsuo, Tetsuzo Ueda, Tsuyoshi Tanaka, Daisuke Ueda, "Unlimited high breakdown voltage by natural super junction of polarized semiconductor." IEEE Electron Device Letters, vol.29, pp. 1087-1089, Oct 2008.
[30] N. Ikeda, J. Li, S. Kato, M. Masuda, S. Yoshida, "A novel GaN device with thin AlGaN/GaN heterostructure for high-power applications." Furukawa Review vol. 29, pp. 1-6, 2006.
[31] D. Buttari, A. Chini, G. Meneghesso, E. Zanoni, B. Moran, S. Heikman, N. Q. Zhang, L. Shen, R. Coffie, S. P. Denbaars, U. K. Mishra, "Systematic characterization of Cl 2 reactive ion etching for improved ohmics in AlGaN/GaN HEMTs." IEEE Electron Device Letters, vol. 23, pp. 76-78, February 2002.
[32] Hai Lu, Rong Zhang, Xiangqian Xiu, Zili Xie, Youdou Zheng, Zhonghui Li, "Low leakage Schottky rectifiers fabricated on homoepitaxial GaN." Applied Physics Letters, vol. 91, pp.172113, 2007.
[33] Lei Wang, M. I. Nathan, T. H. Lim, M. A. Khan, Q. Chen, "High barrier height gan schottky diodes: Pt/gan and pd/gan."Applied Physics Letters, vol.68, pp. 1267-1269, 1996.
[34] A. P. Zhang, G. T. Dang, F. Ren, H. Cho, K. P. Lee, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee, C. C. Chuo. "Comparison of GaN pin and Schottky rectifier performance." IEEE Transactions Electron Devices, vol. 48, pp.407-411, March 2001.
[35] K. J. Schoen, J. M. Woodall, J. A. Cooper, M. R. Melloch, "Design considerations and experimental analysis of high-voltage SiC Schottky barrier rectifiers." IEEE Transactions Electron Devices, vol. 45, pp. 1595-1604, July 1998.
[36] Y. W. Lian, Y. S. Lin, J. M. Yang, C. H. Cheng, Shawn S. H. Hsu, "AlGaN/GaN Schottky barrier diodes on silicon substrates with selective Si diffusion for low onset voltage and high reverse blocking." IEEE Electron Device Letters, vol. 34, pp. 981-983, August 2013.