簡易檢索 / 詳目顯示

研究生: 劉竣誠
Chun-Cheng Liu
論文名稱: 超奈米微晶鑽石薄膜在場發射元件上的應用與發展
The development and application of the ultra-nano crystalline diamond film in field emission device
指導教授: 戴念華
Nyan-Hwa Tai
李紫原
Chi-Young Lee
林諭男
I-Nan Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 97
中文關鍵詞: 奈米鑽石場發射成核
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究論文的內容,先是探討超奈米微晶鑽石成長在鉬、鎢金屬薄膜
    以及鉬、鎢金屬塊材的情形,由於碳原子在各種金屬上的碳溶解度以及擴散係數的不同,可以發現鑽石成長在鎢金屬上比在鉬金屬來得快,沉積在薄膜上比在塊材上來得迅速,最主要的發現在於沉積在鉬、鎢金屬薄膜上會有一層明顯的金屬碳化物的存在,而在塊材上似乎看不到這一層的存在。再來是利用氧電漿蝕刻的方式很乾淨的將鑽石薄膜圖紋化,藉由不同光罩圖形製作出平面以及立體的場發射元件,之後再對圖紋化後的鑽石結構做氫電漿、氬電漿、氮+氧電漿處理,可以清楚看出在氫電漿處理下表面形成碳氫鍵結後,對鑽石的場發射性質有很大的改善,最大電流密度可以高達3400 mA/cm2,也發現鑽石表面碳氧鍵結的形成會大幅度降低鑽石的場發射性質,主要的原因在於碳氫鍵結會提升鑽石的負電子親和力(NEA),而碳氧鍵結會降低負電子親和力的程度甚至會讓它變成正的電子親和力。平面場發射元件雖然不如預期量測得到場發射性質,但是也確定了常被用來當作絕緣體的氧化矽的絕緣效果。本實驗也用溼蝕刻的方式,搭配鋁膜以及氮化鈦當做犧牲層,選區成長出鑽石薄膜,可以乾淨低去除非鑽石區域而不破壞鑽石圖紋化區域的形狀。


    In this work, the ultra-nano crystalline diamond film(UNCD) was grown on the molybdenum(Mo-Si)、tungsten(W-Si) films and molybdenum(Mo-B)、tungsten(W-B) bulks by microwave plasma enhanced chemical vapor deposition(MPECVD). The XRD and XPS analysis showed there is metallic carbide forming in the interface between diamond and metal films. In contrast, there is no metallic carbide forming between diamond and metal bulks.
    From SEM measurement, diamond deposited on the W-Si film was faster than on the Mo-Si film. The SEM also showed the grow rate in films are faster than bulks.
    Diamond film can be well patterned by dry etching of oxygen plasma. Using Al film be a mask, The diamond film can be pattern to produce 2-D lateral field emitter and 3-D field emitter. After hydrogen plasma treatment, the maximum current density can up to 3400 mA/cm2.XPS analysis also showed the surface of diamond was hydrogenated by hydrogen plasma.
    The other way to produce diamond film devices is selective area deposition(SAD). Taking Al and TiN as sacrificial layer, successfully pattern diamond by wet-etching process.

    摘 要 □ Abstract II 誌謝 □□□ 總目錄 V 圖目錄 IX 表目錄 XIII 第一章 序論 1 I. 簡介 1 II. 研究動機 2 III. 論文範疇 3 第二章 文獻回顧 4 2.1 人工鑽石薄膜的歷史與發展 4 2.1.1 鑽石薄膜的分類 5 2.2 鑽石薄膜的成核機制與各項性質的探討 8 2.2.1 鑽石成核的方法 8 2.2.2鑽石薄膜的性質 12 2.3鑽石薄膜的製程方式與應用 16 2.3.1 氧電漿蝕刻法 16 2.3.2 選區成長法 17 第三章 研究方法與實驗流程 30 3.1氧電漿乾蝕刻製程(側向場發元件) 30 3.1.1 沉積氧化矽在矽基板上 30 3.1.2 沉積超奈米微晶鑽石薄膜 30 3.1.3 黃光微影 31 3.1.4 鋁光罩 31 3.1.5 去除光阻 32 3.1.6 氧電漿乾蝕刻 32 3.1.7 鋁膜的去除 32 3.1.8 電漿處理 33 3.2氧電漿乾蝕刻製程(3-D場發射元件) 33 3.3選區成長製程 33 3.3.1 沉積氧化矽在矽基板上 33 3.3.2 前處理 34 3.3.3 沉積氮化鈦(TiN)及鋁膜(Al) 34 3.3.4 黃光微影 35 3.3.5 蝕刻 35 3.3.6 沉積超奈米微晶鑽石薄膜 35 3.3.7 掀掉鋁膜及氮化鈦 35 3.4超奈米鑽石膜在不同金屬上面的成長的研究 36 3.4.1 準備不同金屬基板 36 3.4.2 試片前處理 36 3.4.3 鑽石的鍍膜參數 37 3.5 薄膜的分析與元件的量測 37 3.5.1 場發射性質的量測 37 3.5.2 拉曼光譜分析(Raman) 37 3.5.3場發射掃描式電子顯微鏡分析(SEM) 38 3.5.4 表面成分分析(ESCA) 38 3.5.5 縱深成分分析(SIMS) 38 3.5.6 材料晶體結構之分析(XRD) 38 第四章 研究結果與討論 44 4.1在金屬塊材以及金屬薄膜上面成長奈米鑽石的討論 44 4.1.1 X光繞射(XRD)分析 44 4.1.2表面鍵結分析 46 4.1.3 表面形貌分析(SEM) 49 4.1.4 拉曼光譜分析 49 4.1.5 鉬金屬與鎢金屬本身的材料特性 50 4.1.6 綜合討論 51 4.2以濕蝕刻的方式選區成長鑽石 52 4.2.1只用鋁當做犧牲層 52 4.2.2利用鋁和氮化鈦當做犧牲層 52 4.3 利用氧電漿乾蝕刻超奈米微晶鑽石薄膜 53 4.3.1 平面側向場發元件(lateral emitter) 53 4.3.2 UNCD的圓柱場發元件 56 4.3.2.1電漿處理對場發射的影響 59 4.3.2.2 沒有處理過且有圖紋化的跟單純薄膜狀的鑽石試片的比較 61 4.3.2.3 電漿處理過後的表面鍵結情形 62 4.3.2.4 結論 62 第五章 總結與未來展望 84 參考文獻 86

    [1]. W. L. Liu, M. Shamsa, “Thermal conduction in nanocrystalline diamond films : Effects of the grain boundary scattering and nitrogen doping.” Applied Physics Letters 89, 171915 (2006)
    [2]. J. E. Field, “properties of Diamond.”Academic Press, London, 1992.
    [3]. L. S. Pan and D. R. Kania, “Diamond: Electronic Properties and Application.” Kluwer Academic, London, (1995)
    [4]. G. F. Iriarte, “SAW COM-parameter extraction in A1N/Diamond layered structures” J. Appl. Phys. 93 (12) (2003) 15
    [5]. Bi B, Huang W. S, “Surface acoustic waves on nanocrystalline diamond.” Diamond & Related Materials 11 (3-6): 677-680
    [6]. N. Sep_ulveda-Alancastro, “Polycrystalline diamond technology for RFMEMS resonators.” Microelectronic Engineering 73-74 (2004) 435-440
    [7]. Krauss A. R, “Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices.” Diamond & Related Materials 10 (11) (2001) 1952-1961
    [8]. K. Subramanian, W. P. Kang, J. L. Davidson, W. H. Hofmeister, B. K.Choi, M. Howell, “Nanodiamond planar lateral field emission diode.” Diamond & Related Materials 14 (2005) 2099-2104
    [9]. K. Subramanian, W. P. Kang, J. L. Davidson, B. K.Choi, M. Howell, “Nanodiamond lateral comb array field emission diode for high current application.” Diamond & Related Materials 15 (2006) 1994-1997
    [10]. Anne Giraud, “Chemical Nucleation of CVD Diamond Growth.” J. Am. Chem. Soc. 123 (2001) 2271-2274
    [11]. Oliver A. Williams, “High growth rate MWPECVD of single crystal diamond.” Diamond & Related Materials 13 (2004) 557-560
    [12]. Karabutov A. V, “Diamond/sp2-bonded carbon structures: quantum well field electron emission.” Diamond & Related Materials 10 (2001) 840-846
    [13]. Liu H.W, “Selective deposition of diamond films on insulators by selective seeding with a double-layer mask.” Diamond & Related Materials 10 (2001) 1573-1577
    [14]. Wenguang Zhangu, “Effect of substrate temperature on the selective deposition of diamond films.” Diamond & Related Materials 9 (2000) 1687-1690
    [15]. Yongqing Fu, “Patterning of diamond microstructures on Si substrate by bulk and surface micromachining.” Journal of Materials Processing Technology 132 (2003) 73-81
    [16]. K. E. Spear and J. P. Dismukes, “Synthetic Diamond: Emerging CVD Science and Technology.” Wiley, Pennington, NJ, 1994.
    [17]. B. Dischler and C. Wild, “Low-Pressure Synthetic Diamond:Manufacturing and Applications.” Springer, Heidelberg, 1998.
    [18]. J. C. Angus, H. C. Will, and W. S. Stanko, J. Appl. Phys. 39, 2915 (1968).
    [19]. D. G. Bhat, D. G. Johnson, A. P. Malshe, H. Naseem, W. D. Brown, L. W. Schaper, and C. H. Shen, “A preliminary investigation of the effect of post-deposition polishing of diamond films on the machining behavior of diamond-coated cutting tools.” Diamond & Related Materials 4, 921-929 (1995)
    [20]. D. Zhou, T. G. McCauley, L. C. Qin, A. R. Krauss, “Synthesis and electron field emission of nanocrystalline diamond thin films grown from N2/CH4 microwave plasmas.” J. Appl. Phys. 82, 4546 (1997).
    [21]. J.Lee, B. Hong, R. Messier, and R. W. Collins, “Nucleation and bulk film growth kinetics of nanocrystalline diamond prepared by microwave plasma-enhanced chemical vapor deposition on silicon substrates.” Appl. Phys. Lett. 69, 1716 (1996).
    [22]. S.A Catledge and Y. K. Vohra, “Effect of nitrogen addition on the microstructure and mechanical properties of diamond films grown using high-methane concentrations.” J. Appl. Phys. 86, 698 (1999).
    [23]. T. Sharda, M. Umeno, T. Soga, and T. Jimbo, “Highly stressed carbon film coatings on silicon: Potential applications.” Appl. Phys. Lett. 80, 2880 (2002).
    [24]. Xiao X, Birrell J, Gerbi JE, Auciello O, Carlisle JA, “Low temperature growth of ultrananocrystalline diamond.” J. Appl. Phys. 96, 2232-2239 (2004).
    [25]. Q. H. Fan, A. Fernandes, E. Pereira, J. Gracio, “Adherent diamond coating on copper using an interlayer.” Vacuum 52, 193-198 (1999)
    [26]. V. I. Konov, A. A. Smolin, V. G. Ralchenko, S.M. Pimenov, E. D. Obraztsova, “DC-ARC PLASMA DEPOSITION OF SMOOTH NANOCRYSTALLINE DIAMOND FILMS.” Diamond & Related Materials 4, 1073-1078 (1995).
    [27]. T. S. Yang, J. Y. Lai, C. L. Cheng, and M. S. Wong, “Growth of faceted, ballas-like and nanocrystalline diamond films deposited in CH4/H2/Ar MPCVD.” Diamond & Related Materials 10, 2161-2166 (2001).
    [28]. K. Wu, E. G. Wang, Z. X. Cao, Z. L. Wang, and X. Jiang, “Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films.” J. Appl. Phys. 88, 2967 (2000).
    [29]. L. Constant, C. Speisser, F. Le Normand, “HFCVD diamond growth on Cu(1 1 1). Evidence for carbon phase transformations by in situ AES and XPS.” Surface Science 387, 28-43 (1997).
    [30]. S. Yugo, T. Kimura, H. Kanai, Int. Conf. Diamond Science and Technology, (JNDF Tokyo) Oktt. 24-26, 1988, Tokyo, Japan.
    [31]. Masayoshi Tarutani, Guofu Zhou, Yoshizo Takai, Ryuichi Shimizu, Takeshi Tachibana, “Transmission electron microscope study of heteroepitaxial diamond on Pt (111).” Diamond & Related Materials 6, 272-276 (1997).
    [32]. Z. Sitar, W. Liu, P. C. Yang, C. A. Wolden, R. Schlesser, J. T. Prater, “Heteroepitaxial nucleation of diamond on nickel.” Diamond & Related Materials 7, 276-282 (1998).
    [33]. R. Haubner, A. Lindlbauer, B. Lux, “Diamond nucleation and growth on refractory metals using microwave plasma deposition.” Journal of Refractory Materials and Hard Material 14, 119-125 (1996).
    [34]. E. Anger, A. Gicquel, Z. Z. Wang, M. F. Ravet, “Chemical and morphological modifications of silicon wafers treated by ultrasonic impacts of powders:consequences on diamond nucleation.” Diamond & Related Materials 4, 759-764 (1995).
    [35]. Chi Tang, David C. Ingram, “The effect of ultrasonic pre-treatment on nucleation density of chemical vapor deposition diamond.” J. Appl. Phys. 78, 5745-5749 (1995).
    [36]. Kasper O. Schweitz, Ralf B. Schou-Jensen, Svend S. Eskildsen, “Ultrasonic pre-treatment for enhanced diamond nucleation.” Diamond & Related Materials 5, 206-210 (1996).
    [37]. Y. Chakk, R. Brener, A. Hoffman, “Enhancement of diamond nucleation by ultrasonic substrate abration with a mixture of metal and diamond particles.” Appl. Phys. Lett. 66, 2819-2821 (1995).
    [38]. Y. Chakk, R. Brener, A. Hoffman, “Mechanism of diamond formation on substrates abraded with a mixture of diamond and metal powders.” Diamond & Related Materials 5, 286-291 (1996).
    [39]. Y. Chakk, M. Folman, A. Hoffman, “Kinetics of the initial stages of CVD diamond growth on non-diamond substrates- surface catalytic effects and homoepitaxy.” Diamond & Related Materials 6, 681-686 (1997).
    [40]. Stephen J. Harris, “Mechanism for diamond growth from methyl radicals.” Appl. Phys. Lett. 56, 2298-2300 (1990).
    [41]. F. G. Celii, J. E. Butler, “Direct monitoring of CH3 in afilament-assisted diamond chemical vapor deposition reactor.” J. Appl. Phys. 71, 2877-2883 (1992).
    [42]. Yen-Chih Lee, Su-Jien Lin, Debabrata Pradhan, I-Nan Lin, “Improvement on the growth of ultrananocrystalline diamond by using pre-nucleation technique.” Diamond & Related Materials 15, 353-356 (2006).
    [43]. S. T. Lee, H. Y. Peng, X. T. Zhou, N. Wang, C. S. Lee, I. Bello, Y. Lifshitz, “nucleation site and mechanism leading to epitaxial growth of diamond films.” Science 287, 104-106 (2000).
    [44]. R. H. Fowler, L. W. Nordheim, Proc. Roy. Soc. London, Ser. 1928, A119, 173.
    [45]. L. Nordheim, Proc. Roy. Soc. London, Ser. 1928, A121, 626.
    [46]. D. A. Buck and K. R. Shoulders, “An approach to microminiature systems”, in Proc. Eastern Joint Computer Conf., pp55-59 (AIEE, New York (1958).
    [47]. C. A. Spindt, I. Brodie, L. Humphrey and E. R. Westerberg, “Physical properties of thin field emission cathode with molybdenum cones”, J. Appl. Phys. 47, pp5248-5263 (1976).
    [48]. M. W. Geis, N. N. Efremow, J. D. Woodhouse, M. D. Mcaleese, M. Marchywka, D. G. Socker and J. F. Hochedez, “Diamond Cold-Cathode.” IEEE Electr. Dev. Lett., 12(8), pp456 (1991).
    [49]. V. Raiko, R. Spitzl, B. Aschermann, D. Theirich, J. Engemann, N. Pupeter, T. Habermann, G. Muller, “Field emission observations from CVD diamond-coated silicon emitters.” Thin Solid Films 190-194 (1996).
    [50]. A. V. Okotrub, L. G. Bulusheva, A. V. Guselnikov, V. L. Kuznetsov, Yu. V. Butenko, “Field emission from products of nanodiamond annealing.” Carbon 42, 1099-1102 (2004).
    [51]. K. Subramanian, W. P. kang, J. L. Davidson, R. S. Takalkar, B. K. Choi, M. Howell, D. V. Kems, “Enhanced electron field emission from micropatterned pyramidal diamond tips incorporating CH4H-2N-2 plasma-deposited nanodiamond.” Diamond & Related Materials 15, 1126-1131 (2006).
    [52]. S. Chowdhury, E. de Barra, M. T. Laugier, “Hardness measurement of CVD diamond coatings on SiC substrates.” Surface & Coatings Technology 193, 200-205 (2005).
    [53]. G. F. Ding, H. P. Mao, Y. L. Cai, Y. H. Zhang, X. L. Zhao, “Micromachining of CVD diamond by RIE for MEMS application.” Diamond & Related Materials 14, 1543-1548 (2005).
    [54]. R. Ramesham, “Effect of annealing and hydrogen plasma treatment on the voltammetric and impedance behavior of the diamond electrode.” Thin Solid Films 315, 222-228 (1998).
    [55]. M. I. Landstrass, K. V. Ravi, “Hydrogen passivation of electrically active defects in diamond.” Appl. Phys. Lett. 55, 1391-1393 (1989).
    [56]. H.W. Liu, C.X. Gao, X. Li, “Selective deposition of diamond films on insulators by selective seeding with a double-layer mask.” Diamond and Related Materials 10, 1573 -1577 (2001).
    [57]. S.C. Ha, D.H. Kang, K.B. Kim, “Fabrication of gated diamond field emitter array using a selective diamond growth process.” Thin Solid Films 341, 216-220 (1999).
    [58]. Q.Yang, C.Xiao, W.Chen, A. Hirose, “Selective growth of diamond and carbon nanostructures by hot filament chemical vapor deposition.” Diamond and Related Materials 13, 433–437 (2004).
    [59]. N. A. Fox, M. J Youh, W. N. Wang, J. W. Steeds, H. F. Cheng, I-N. Lin, “Properties of electron field emitters prepared by selected area deposition of CVD diamond carbon films.” Diamond and Related Materials 9, 1263-1269 (2000).
    [60]. James Birrell, J.E. Gerbi, O. Auciello, J. Johnson, J.A. Carlisle, “Interpretation of the Raman spectra of ultrananocrustalline diamond.” Diamond and Related Materials 14, 86-92(2005).
    [61]. H. Kuzmany, R. Pfeiffer, N. Salk, B. Gunther, “The mystery of the 1140 cm Raman line in nanocrystalline diamond films.” Carbon 42, 911-917 (2004).
    [62]. Shuji Kiyohara, Yukie Yagi, Katsumi Mori, “Plasma etching of CVD diamond films using an ECR-type oxygen source.” Nanotechnology 10, 385-388 (1999).
    [63]. R. Tavangar, J. M. Molina, L. Weber, “Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast.” Scripta Materialia 56 357-360 (2007).
    [64]. Jason Stotter, Yoshiyuki Show, Shihua Wang, Greg Swain, “Comparison of the Electrical, Optical, and Electrochemical Properties of Diamond and Indium Tin Oxide Thin-Film Electrodes.” Chem. Mater. 17, 4880-4888 (2005).
    [65]. Y. Yamazaki, K. Ishikawa, S. Samukawa, S. Yamasaki, “Defect creation in diamond by hydrogen plasma treatment at room temperature.” Physica B 376-377, 327-330 (2006).
    [66]. T. P. Humphreys, R. E. Thomas, D. P. Malta, J. B. Posthill, M. J. Mantini, R. A. Rudder, G. C. Hudson, R. J. Markunas, “The role of atomic hydrogen and its influence on the enhancement of secondary electron emission from C(001) surfaces.” Appl. Phys. Lett. 70, 1257-1259 (1996).
    [67]. R. Ramesham, “Effect of annealing and hydrogen plasma treatment on the voltammetric and impedance behavior of the diamond electrode.” Thin Solid Films 315, 222-228 (1998).
    [68]. Huimin Liu, David S. Dandy, “Studies on nucleation process in diamond CVD- an overview of recent developments.” Diamond and Related Material 4, 1173-1188(1995).
    [69]. W. Deferme, K. Haenen, G. Tanasa, “Compositional and electrical characterization of the hydrogen-oxygen terminated diamond (100) surface.” Phys. Stat. Sol. (a)203, 12, 3114-3120 (2006).
    [70]. F. Maier, R. Graupner, M. Hollering, L. Hammer, J. Ristein, L. Ley, “The hydrogenated and bare diamond (110) surface:a combined LEED-, XPS-, and ARPES study.” Surface Science 443, 177-185 (1999).
    [71]. I. Kusunoki, M. Sakai, Y. Igari, S. Ishidzuka, T. Takami, T. Takaoka, M. Nishitani-Gamo, T. Ando, “XPS study of nitridation of diamond and graphite with a nitrogen ion beam.” Surface Science 492, 315-328 (2001).
    [72]. N. W. Makau, T. E. Derry, “Study of oxygen on the three low index diamond surfaces by XPS.” Surface Review and Letters, 10, 295-301 (2003).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE