簡易檢索 / 詳目顯示

研究生: 王偉丞
論文名稱: 利用「基於電荷特性之電容量測法」作為CMOS MEMS單軸加速度計電容讀取電路
Using Charge-based Capacitance Measurement (CBCM) Method for CMOS MEMS Single-axis Accelerometer Readout Circuit
指導教授: 陳榮順
口試委員: 李昇憲
陳宗麟
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 77
中文關鍵詞: CMOS MEMSCBCM電容感測電路
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用CMOS標準製程製作電容式加速度感測器的製作,由於元件的初始電容值極小(約數百fF),因此電容式加速度計的感測電路通常需具備抵抗雜訊、高靈敏度與高解析度等特性。本研究改良「基於電荷特性之電容量測法」(Charge-based Capacitance Measurement,CBCM)作為加速度計的電容讀取電路,藉由CBCM電路本身可用來量測fF等級的靜態電容且具有高解析度等特性,將其設計成能感測加速度計動態電容的感測電路,提供現有微機電電容感測電路另一途徑。本研究透過國家晶片系統中心所提供的TSMC 0.18 μm 1P6M CMOS製程平台,將單軸電容式加速度計與CBCM電容感測電路整合至單一晶片上,經過後製程處理後可成功將元件懸浮。經由模擬可知,此加速度計的共振頻率為4.3 kHz,且在1 G下具有0.9 fF的電容變化量,搭配所設計的電容感測電路可將1 fF的電容變化量轉換成約35 mV的電壓變化量,可得元件整體靈敏度達31.5 mV/g,感測電路的輸出雜訊則為29.8 μg/√Hz。另外,經由晶片的測試電路可量測到fF等級的電容值,驗證了CBCM電容感測電路的可行性。


    摘要 I 目錄 II 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究背景與動機 1 1.3 文獻回顧 4 1.3.1 加速度計 4 1.3.2 電容感測電路 6 1.3.3 CMOS製程 12 1.4 論文架構 12 第二章 系統整合與分析 14 2.1 整體系統架構 15 2.2 加速度計結構分析 16 2.2.1 彈簧設計 18 2.2.2 加速度計應力補償外框 18 2.2.3 加速度計感測介面 19 2.3 電容感測電路架構分析 21 2.3.1 CBCM電路 22 2.3.2 二級運算放大器 24 2.3.3 改良式CBCM電容感測電路 25 2.4 結果與討論 27 第三章 模擬結果與分析 28 3.1 加速度計設計與模擬 28 3.1.1 彈簧常數模擬 29 3.1.2 初始感測電容模擬 31 3.1.3 加速度模擬 32 3.1.4 共振頻率模擬 35 3.2 電容感測電路設計與模擬 37 3.2.1 CBCM電路模擬 37 3.2.2 二級運算放大器模擬 38 3.2.3 改良式CBCM電容感測電路模擬 42 3.3 光罩佈局 46 3.3.1 元件佈局 46 3.3.2 電路佈局 48 3.3.3 感測晶片佈局圖 49 3.4 結果與討論 49 第四章 後製程流程與實驗結果 51 4.1 TSMC CMOS製程簡介 51 4.2 元件CMOS後製程流程 52 4.3 後製程流程中滴光阻機制 55 4.4 加速度計後製程實驗結果 58 4.5 結果與討論 60 第五章 量測實驗結果與比較 61 5.1 加速度計量測設備 61 5.2 元件量測結果 63 5.2.1 元件翹曲程度量測 63 5.2.2 調變與感測訊號量測 66 5.2.3 共振頻率量測 68 5.3 晶片量測結果 69 第六章 結論與未來工作 72 6.1 本研究結論 72 6.2 未來工作 73 參考文獻 74

    [1] P. Scheeper, J. O. Gullov, and M. Kofoed, "A piezoelectric triaxial accelerometer," Journal of Micromechanics and Microengineering, Vol. 6, No. 1, pp. 131-133, 1996.
    [2] R. d. Reus, J. O. Gullov, and P. Scheepe, "Fabrication and characterization of a piezoelectric accelerometer," Journal of Micromechanics and Microengineering, Vol. 9, No.2, pp. 123-126, 1999.
    [3] L. P. Wang, R. A. Wolf, Jr., Y. Wang, K. K. Deng, L. Zou, R. J. Davis, and S. Trolier-McKinstry, "Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers," Journal of Microelectromechanical Systems, Vol. 12, pp. 433-439, 2003.
    [4] S. Huang, X. Li, Z. Song, and Y. Wang, "A high-performance micromachined piezoresistive accelerometer with axially stressed tiny beams," Journal of Micromechanics and Microengineering, Vol. 15, No.5, pp. 993-1000, 2005.
    [5] A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M. Fitzgerald, L. Zhang, N. I. Maluf, and T. W. Kenny, "A high-performance planar piezoresistive accelerometer," Journal of Microelectromechanical Systems, Vol. 9, pp. 58-66, 2000.
    [6] F. Mailly, A. Martinez, A. Giani, F. Pascal-Delannoy, and A. Boyer, "Design of a micromachined thermal accelerometer: thermal simulation and experimental results," Microelectronics Journal, Vol. 34, pp. 275-280, 2003.
    [7] C.-H. Liu and T. W. Kenny, "A high-precision, wide-bandwidth micromachined tunneling accelerometer," Journal of Microelectromechanical Systems, Vol. 10, pp. 425-433, 2001.
    [8] H. K. Rockstad, T. K. Tang, J. K. Reynolds, T. W. Kenny, W. J. Kaiser, and T. B. Gabrielson, "A miniature, high-sensitivity, electron tunneling accelerometer," Sensors and Actuators A: Physical, Vol. 53, pp. 227-231, 1996.
    [9] H. Luo, G. Zhang, G. K. Fedder, and L. R. Carley, "A post-CMOS micromachined lateral accelerometer," Journal of Microelectromechanical Systems, Vol. 11, pp. 188-195, 2002.
    [10] H. Qu, D. Fang and H. Xie, "A single-crystal silicon 3-axis CMOS-MEMS accelerometer," The 3rd IEEE Conference on Sensors, Oct. 24-27, 2004, Vienna, Austria.
    [11] C.-M. Sun, M.-H. Tsai, Y.-C. Liu, and W. Fang, "Implementation of a Monolithic Single Proof-Mass Tri-Axis Accelerometer Using CMOS-MEMS Technique," IEEE Transactions on Electron Devices, Vol. 57, pp. 1670-1679, 2010.
    [12] P. R. Gray, D. Senderowicz, and D. G. Messerschmitt, "A low-noise chopper-stabilized differential switched-capacitor filtering technique," IEEE Journal of Solid-State Circuits, Vol. 16, pp. 708-715, 1981.
    [13] C. C. Enz and G. C. Temes, "Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization," Proceedings of the IEEE, Vol. 84, pp. 1584-1614, 1996.
    [14] C. Junseok, H. Kulah, and K. Najafi, "An in-plane high-sensitivity, low-noise micro-g silicon accelerometer with CMOS readout circuitry," Journal of Microelectromechanical Systems, Vol. 13, pp. 628-635, 2004.
    [15] M. Schipani, P. Bruschi, G. C. Tripoli, and T. Ungaretti, "A low power CMOS interface circuit for three-axis integrated accelerometers," The 3rd Conference on Ph. D Research in Microelectronics and Electronics (PRIME), July 2-5, 2007, Bordeaux, France.
    [16] 國家晶片系統設計中心,"CMOS感測晶片技術",2011。
    [17] J. C. Chen, D. Sylvester, and C. Hu, "An on-chip, interconnect capacitance characterization method with sub-femto-farad resolution," The 11th International Conference on Microelectronic Test Structures (ICMTS), March 17-20, 1997, Monterey, California, USA.
    [18] D. Sylvester, J. C. Chen, and C. Hu, "Investigation of interconnect capacitance characterization using charge-based capacitance measurement (CBCM) technique and three-dimensional simulation," IEEE Journal of Solid-State Circuits, Vol. 33, pp. 449-453, 1998.
    [19] B. W. McGaugh, J. C. Chen, D. Sylvester, and C. Hu, "A simple method for on-chip, sub-femto Farad interconnect capacitance measurement," IEEE Electron Device Letters, Vol. 18, pp. 21-23, 1997.
    [20] E. Ghafar-Zadeh and M. Sawan, "A high precision and linearity differential capacitive sensor circuit dedicated to bioparticles detection," The 3rd International IEEE-NEWCAS Conference, June 19-22, 2005, Quebec City, Canada.
    [21] E. Ghafar-Zadeh, M. Sawan, V. P. Chodavarapu, and T. Hosseini-Nia, "Bacteria Growth Monitoring Through a Differential CMOS Capacitive Sensor," IEEE Transactions on Biomedical Circuits and Systems, Vol. 4, pp. 232-238, 2010.
    [22] M.-H. Tsai, Y.-C. Liu, C.-M. Sun, C.-W. Wang, C.-W. Chen, and W. Fang, "A 400×400 μm2 3-axis CMOS-MEMS accelerometer with vertically integrated fully-differential sensing electrodes," The 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), June 5-9, 2011, Beijing, China.
    [23] R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, "Comb-drive actuators for large displacements," Journal of Micromechanics and Microengineering, Vol. 6, No. 3, pp. 320-329, 1996.
    [24] Z. Gang, X. Huikai, L. E. de Rosset, and G. K. Fedder, "A lateral capacitive CMOS accelerometer with structural curl compensation," The 12th International Conference on Micro Electro Mechanical Systems, Jan. 17-21, 1999, Orlando, Florida, USA.
    [25] Z. Gang, "Desing and Simulation of A CMOS-MEMS Accelerometer," 1998. July 10, 2012, from http://www.ece.cmu.edu/~mems/pubs/pdfs/ece/ms_thesis/0049_zhang-1998.pdf
    [26] J. M. Tsai and G. K. Fedder, "Mechanical noise-limited CMOS-MEMS accelerometers," The 18th International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 30-Feb. 3, 2005, Miami, Florida, USA.
    [27] 李明儒,"靜電式微機電元件電容感測電路之設計、模擬與實現" ,國立清華大學奈米工程與微系統研究所碩士論文,2008。
    [28] C.-M. Sun, C.-W. Wang, D.-H. Liu, M. S.-C. Lu, W. Fang, C.-J. Liang, H.-S. Hsieh, and T.-K. Shing, "A Novel CMOS MEMS Accelerometer with Four Sensing Finger Arrays," The 5th IEEE Sensors Conference, Oct. 22-25, 2006, Daegu, South Korea.
    [29] 洪英瑞、曾聖翔,"CIC使用手冊 - 0.18 um CMOS微機電製程v.2.3",2011。
    [30] 黃鯖珮,"CMOS-MEMS微加速度計與低雜訊電容感測電路之整合與實現",國立清華大學動力機械工程學系碩士論文,2010。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE