研究生: |
賴柏瑋 Lai, Bo-Wei |
---|---|
論文名稱: |
以銀離子輔助蝕刻與酸蝕刻擴孔在矽表面形成倒金字塔之研究 Metal-Assisted Chemical Etching and Subsequent Acid Etching to Form Inverted Pyramid on Surface of Silicon Substrate |
指導教授: |
王立康
Wang, Li-Karn |
口試委員: |
陳昇暉
Chen, Sheng-Hui 李明昌 Lee, Ming-Chang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 製絨 、金屬輔助蝕刻 、倒金字塔 |
外文關鍵詞: | Texturing, Metal-Assisted-Chemical-Etching, Inverted pyramid |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
太陽電池自從2018、2019年開始,製程方向上便已從沙漿片往鑽石線切割邁進,在過往沙漿片上可利用簡單的酸蝕刻在表面進行製絨,但鑽石線切割片上由於切痕較深,且表面較無孔洞而使酸蝕刻較難以進行製絨,於是在鑽石線切割片上的製絨便較困難。在過往論文與研究上,會以金屬輔助蝕刻的方式在表面形成倒金字塔,但在金屬輔助的製程上仍有許多問題需要克服。
本論文以三步蝕刻的方式在表面形成倒金字塔,且與過往研究上不同的是,在製程上的金屬離子採用較高濃度的蝕刻液,在製程上可以不需加熱,便可在較短時間內形成奈米孔洞;在第二步的蝕刻液中,分別以固定濃度的蝕刻液與不同時間的蝕刻來分析孔洞的大小與後續的處理,在最後一步的地方以氫氧化鉀做最後的蝕刻。最後實驗數據的發現較高濃度的金屬離子可以產上較大的孔洞。最後再以電漿輔助沉積在表面鍍上氮化矽做反射率的量測,希望可以為金屬輔助蝕刻的貢獻做一點綿薄的心力。
Since 2018, the process of solar cells has moved from the age of slurry-wire-sawn wafers to diamond-wire-sawn wafers. In the past, acid etching can be used to make texture on the surfaces of slurry-wire-sawn wafers, but diamond-wire-sawn wafers have deep cut marks. And the surfaces are relatively free of holes so that regular acid etching is not applicable for texturing, and thus it is more difficult to produce a textured surface on the diamond-wire-sawn wafers. In previous researches, metal-assisted chemical etching was used to form inverted pyramids on the surfaces of diamond-wire-sawn silicon wafers, but there are still many problems to be overcome in the metal-assisted chemical etching process.
This paper uses a three-step silver-assisted chemical etching method to form an inverted pyramids on the surface of a diamond-wire-sawn silicon wafers.Different from the previous research here, the silver ions in the process have a higher concentration in the etching solution, which shortens the etching time period without heating. Nanopores are formed within a short time period in the first step of etching; in the second step of etching, the sizes of the holes are analyzed at a fixed concentration of etching solution for different etching time periods.Then KOH solution is used in the final step of etching to form inverted pyramids. It is found that higher concentration of silver ions can produce larger pores in the first step. Finally, plasma-enhanced chemical vapor deposition(PECVD) is used to coat silicon nitride on the surface for reflectivity measurement, hoping this study can make a little contribution on metal-assisted chemical etching.
[1] https://scitechvista.nat.gov.tw/Article/c000003/detail?ID=7fc53152-919d-4c2b-98e5-b0521cd9239c
[2] https://www.researchgate.net/figure/Various-stages-of-Czochralski-crystal-growth-a-meltdown_fig7_260582305
[3] https://www.pveducation.org/pvcdrom/manufacturing-si-cells/float-zone-silicon
[4] https://www.researchgate.net/figure/Multi-wire-sawing-process-of-silicon-wafers-a-schematic-of-machine-tool-b-wire-slurry_fig1_337746268
[5] S. Ray, A. Mondal, and U. Gangopadhyay,“Improvement of n-Type crystalline silicon solar cell performance using novel texturization method,” by SERI-DST Gov of India
[6] https://www.helmholtz-berlin.de/forschung/oe/se/silizium-photovoltaik/arbeitsgebiete/heteroemittersolarzellen/oberflaechen/etching-of-si-surfaces--mace-and-electrochemical-processing_en.html
[7] K. Gao, Y. Liu, Y. Fan, L. Shi, Y. Zhuang, Y. Cui, S. Yuan, Y. Wan, W. Shen, and Z. Huang ,“High-efficiency silicon inverted pyramid based passivated emitter and rear cells,” Gao et al. Nanoscale Research Letters
[8] https://zh.m.wikipedia.org/zhtw/%E5%8D%8A%E5%AF%BC%E4%BD%93
[9] https://zh.wikipedia.org/wiki/File:Direct-Bandgap.png
[10] T. Goudon , V. Miljanovic, and C. Schmeiser, “On the shockley-read-hall model:generation-recombination in semiconductors,” Applied Mathematics , vol. 67, no. 4, pp. 1183-1201
[11] J. Acker, T. Koschwitz, B. Meinel, R. Heinemann, and C. Blocks, “HF/HNO3 etching of the saw damage,” Energy Procedia , vol. 38, pp. 223-233, 2013
[12] M. Steinert, J. Acker, S. Oswald, and K. Wetzig, “Study on the mechanism of silicon etching in HNO3-Rich HF/HNO3 mixtures,” J. Phys. Chem. C, 111, 5, 2133–2140, 2007
[13] M. Pfiffer, P. Cormont, E. Fargin, B. Bousquet, M. Dussauze, S. Lambert, and J. Neauport , “Effects of deep wet etching in HF/HNO3 and KOH solutions on the laser damage resistance and surface quality of fused silica optics at 351 nm,” Optics Express, vol. 25, No. 5, pp. 4607-4620, 2017
[14] Z. Huanga, K. Gaoa, X. Wanga, C. Xua, X. Songa, L. Shia,Y. Zhangb, B. Hoexb, and W. Shenc, “Large-area MACE si nano-inverted-pyramids for PERC solar cell application,” Solar Energy, vol. 188, pp. 300-304, 2019
[15] J. Wu, Y. Liu, W. Chen, Y. Zhao, Q. Chen, H. Tang, Y. Wang, and X. Du, “Influence of different-sized inverted-pyramids of silicon texture by Ag manipulation on solar cell performance”, Applied Surface Science, vol. 506, , 144778, 2020
[16] Q. Tang, H. Shen, H. Yao, Y. Jiang, Y. Li, L. Zhang, Z. Ni, Q. Wei, and W. Shenc, “formation mechanism of inverted pyramid from sub-micro to micro scale on c-Si surface by metal assisted chemical etching temperature,” Applied Surface Science, vol. 455, pp. 283-294, 2018
[17] C. Zhang, L. Chen, Y. Zhu, and Z. Guan, “Fabrication of 20.19% efficient single crystalline silicon solar cell with inverted pyramid microstructure,” Nanoscale Research Letters, vol. 13, no. 91, 2018
[18] N. H. A. Razak, N. Amin, T. S. Kiong, K. Sopian, and M. Akhtaruzza, “Create high-aspect-ratio silicon nanostructures using metal-assisted chemical etching (MACE) technique,” IEEE 48th Photovoltaic Specialists Conference,2021
[19] C. Zheng, H. Shen, T. Pu, Y. Jiang, Q. Tang, W. Yang, C. Chen, C. Rui, and Y. Li, “High-efficient solar cells by the Ag/Cu-assisted chemical etching process on diamond-wire-sawn multicrystalline silicon,” IEEE Journal of Photovotaics, vol. 7, no. 1, 2017
[20] G. Su, R. Jia, X. Dai, K. Tao, H. Sun, Z. Jin, and X. Liu, “The influence of black silicon morphology modification by acid etching to the properties of diamond wire sawn multicrystalline silicon solar cells,” IEEE Journal of Photovoltaics, vol.8, no. 4, 2018
[21] J. Jin, H. Shen, P. Zheng, K. S. Chan, X. Zhang, and H. Jin, “>20.5% diamond wire sawn multicrystalline silicon solar cells with maskless inverted pyramid like texturing,” IEEE Journal of Photovoltaics, vol.7, no. 5, 2017
[22] L. Yanga, Y. Liua, Y. Wanga, W. Chena, Q. Chena, J. Wua, A. Kuznetsovb, and X. Dua, “18.87%-efficient inverted pyramid structured silicon solar cell by one-step Cu-assisted texturization technique,” Solar Energy Materials&Solar Cells, vol. 166, pp. 121-126, 2017