簡易檢索 / 詳目顯示

研究生: 謝熒
Xie, Ying
論文名稱: 應用多目標粒子群演算法於二代理人流程型生產排程問題
Multi-Objective Particle Swarm Optimization Algorithm for Two-Agent Flow Shop Scheduling Problem
指導教授: 林則孟
James T. Lin
口試委員: 陳盈彥
陳勝一
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 96
中文關鍵詞: 多代理人排程多目標粒子群演算法流程型生產排程問題
外文關鍵詞: Multi-agent scheduling, Flow shop scheduling problem, Multi-objective Particle Swarm Optimization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對流程型生產系統,探討多代理人排程。多代理人排程是指將工件分成多個子集合,子集合分別屬於不同的代理人,代理人有各自的目標。本研究探討二代理人於多機台流程型生產系統,欲決定待加工工件進入系統之順序排程。考量到待加工工件分別屬於兩個代理人,代理人1、2的目標函數分別設定為最大完工時間和總延遲時間,兩個代理人之間會競爭生產資源的使用權。因此,在排程時需綜合考量所有代理人的目標,使得排程方案為所有代理人接受。
    本研究採用Pareto最優的觀念同時考量兩個代理人的目標,目的是找出一組Pareto最優的排程方案。研究方法為利用模擬軟體在考量所有機台、工件、代理人等資訊後,建構相應的模擬模式,以評估排程績效。接著,在面臨可行解空間過大時,設計多目標粒子群演算法(Multi-Objective Particle Swarm Optimization,MOPSO)進行最佳方案的搜尋;為了改善MOPSO收斂性差的不足,本研究從問題的二代理人特性出發,在粒子群的設定、粒子位置更新機制、Pbest更新機制和初始解的產生等方面進行改進,提出基於代理人的多目標粒子群演算法(Agent-based Multi-Objective Particle Swarm Optimization,AMOPSO)。本研究對兩種演算法進行參數分析,以提高搜尋效率和求解品質。
    最後,比較兩種算法和變動鄰域搜尋(Variable Neighborhood Search)在此問題上的求解性能,研究結果顯示,基於代理人的多目標粒子群演算法可以求得在距離、範圍和多樣性指標上表現較佳的解。


    In this research, we study the multi-agent scheduling problem in flow shop environment. In a multi-agent scheduling problem, the set of jobs is divided into several subsets. There are several agents, each interested in a subset of jobs and has its own objective. In this paper flow shop scheduling problem with two agents is considered, in which the processing sequence of all jobs is to be determined. Each job belongs to either of the agents, the objective function of agent 1 is the makespan of its jobs and agent 2 is the total tardiness of its jobs. Two agents have to compete on the use of common processing resources. Every agent’s objective must be considered in the scheduling of jobs and the final schedule must be acceptable to all agents.
    Two agents’ objectives are measured in Pareto optimality and final result is a set of Pareto optimal scheduling solutions. A simulation model including information of machines, jobs and agents is constructed to evaluate performances. The search of optimal solutions in problems with large feasible solution space is through Multi-Objective Particle Swarm Optimization. Due to the low convergence of MOPSO, we propose new swarm setting, position updating, personal best position updating and initialization operations based on two-agent features. The improved new algorithm is called Agent-based MOPSO. The parameter analysis is conducted to determine the best parameter combination in searching efficiency and solution quality.
    In the end, two MOPSO algorithms are compared with Variable Neighborhood Search in two-agent flow shop scheduling problem. Results show that Agent-based MOPSO performs better than the other two algorithms in distance metric, space metric and diversity metric in this problem.

    第一章 緒論 11 1.1 研究背景與動機 11 1.2 研究目的 12 1.3 研究範圍與限制 13 1.4 研究步驟與方法 14 第二章 文獻回顧 15 2.1 多代理人排程問題 15 2.2 多目標模擬最佳化 18 2.2.1 模擬最佳化方法 19 2.2.2 多目標最佳化問題 20 2.2.3 多目標粒子群演算法 21 第三章 系統分析與問題定義 25 3.1 多代理人流程型生產排程問題 25 3.1.1 問題描述 25 3.1.2 流程型生產系統 25 3.1.3 機台資訊 26 3.1.4 工件資訊 26 3.1.5 代理人資訊 27 3.1.6 問題假設 29 3.2 問題定義與分析 30 3.2.1 數學模型 30 3.2.2 輸入輸出資訊分析 32 第四章 研究方法與步驟 37 4.1 研究架構 37 4.1.1 多目標啟發式演算法 37 4.1.2 模擬模式結合多目標啟發式演算法 38 4.2 多目標粒子群演算法 39 4.2.1 多目標粒子群演算法之總體邏輯 40 4.2.2 多目標粒子群演算法之細部做法 41 4.2.3 多目標粒子群演算法之步驟 49 4.3 應用代理人的理念改進多目標粒子群演算法 50 4.3.1 代理人與MOPSO結合的做法 50 4.3.2 基於代理人的MOPSO之流程 54 4.3.3 基於代理人的MOPSO之步驟 55 第五章 模擬實驗與分析 61 5.1 多目標問題求解質量的衡量 61 5.1.1 距離指標(Distance Metric) 61 5.1.2 範圍指標(Space Metric) 62 5.1.3 多樣性指標(Diversity Metric) 62 5.2 MOPSO之參數分析 63 5.2.1 實驗目的、實驗環境與固定參數 63 5.2.2 階段一:分析C1、C2、W之參數 65 5.2.3 階段二:分析C2之參數 67 5.2.4 結論 69 5.3 基於代理人的MOPSO之參數分析 69 5.3.1 實驗目的、實驗環境與固定參數 69 5.3.2 階段一:分析C1、C2、C3和C4之參數 71 5.3.3 階段二:分析C3和C4之參數 74 5.3.4 結論 75 5.4 VNS、MOPSO與基於代理人的MOPSO之對比實驗 76 5.4.1 實驗目的、實驗參數與實驗環境 76 5.4.2 實驗結果與分析 78 5.4.3 總結 88 第六章 結論與建議 89 6.1 結論 89 6.2 建議 91 參考文獻 92

    [1] 林則孟,「系統模擬─理論與應用」,滄海書局,2001。
    [2] 雷德明 嚴新平,「多目標智能優化算法及其應用」,科學出版社,2009。
    [3] Adibi, M., M. Zandieh, and M. Amiri, "Multi-objective scheduling of dynamic job shop using variable neighborhood search", Expert Systems with Applications, 2010; 37(1): 282-287.
    [4] Agnetis, A., J.C. Billaut, S. Gawiejnowicz, D. Pacciarelli, and A. Souhal, "Multi-agent scheduling", Berlin Heidelberg: Springer Berlin Heidelberg. doi, 2014; 10(1007): 978-3.
    [5] Agnetis, A., P. B. Mirchandani, D. Pacciarelli, and A. Pacifici, "Scheduling problems with two competing agents", Operations Research, 2004; 52(2): 229-242.
    [6] Alvarez-Benitez, J. E., R. M. Everson, and J. E. Fieldsend. A MOPSO algorithm based exclusively on pareto dominance concepts. in International Conference on Evolutionary Multi-Criterion Optimization. 2005. Springer.
    [7] Baker, K. R. and J. C. Smith, "A multiple-criterion model for machine scheduling", Journal of Scheduling, 2003; 6(1): 7-16.
    [8] Brewer, P. J. and C. R. Plott, "A binary conflict ascending price (BICAP) mechanism for the decentralized allocation of the right to use railroad tracks", International Journal of Industrial Organization, 1996; 14(6): 857-886.
    [9] Carson, I. and S. John. AutoStat: output statistical analysis for AutoMod users. in Proceedings of the 28th conference on Winter simulation. 1996. IEEE Computer Society.
    [10] Cheng, T. E., S.R. Cheng, W. H. Wu, P. H. Hsu, and C. C. Wu, "A two-agent single-machine scheduling problem with truncated sum-of-processing-times-based learning considerations", Computers & Industrial Engineering, 2011; 60(4): 534-541.
    [11] Cheng, T. E., Y. H. Chung, S.C. Liao, and W. C. Lee, "Two-agent singe-machine scheduling with release times to minimize the total weighted completion time", Computers & Operations Research, 2013; 40(1): 353-361.
    [12] Cheng, T. E., C. Ng, and J. Yuan, "Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs", Theoretical Computer Science, 2006; 362(1): 273-281.
    [13] Cheng, T. E., C. Ng, and J. Yuan, "Multi-agent scheduling on a single machine with max-form criteria", European Journal of Operational Research, 2008; 188(2): 603-609.
    [14] Chiang, T. C., H. C. Cheng, and L. C. Fu, "NNMA: An effective memetic algorithm for solving multiobjective permutation flow shop scheduling problems", Expert systems with applications, 2011; 38(5): 5986-5999.
    [15] Coello, C. A. C., G. T. Pulido, and M. S. Lechuga, "Handling multiple objectives with particle swarm optimization", IEEE Transactions on evolutionary computation, 2004; 8(3): 256-279.
    [16] Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE transactions on evolutionary computation, 2002; 6(2): 182-197.
    [17] Eberhart, R. and J. Kennedy, "A new optimizer using particle swarm theory, Proceedings of the Sixth International Symposium on Micro Machine and Human Science: Oct 1995", 1995.
    [18] Elvikis, D., H. W. Hamacher, and V. T’kindt, "Scheduling two agents on uniform parallel machines with makespan and cost functions", Journal of Scheduling, 2011; 14(5): 471-481.
    [19] Fan, B., T. E. Cheng, S. Li, and Q. Feng, "Bounded parallel-batching scheduling with two competing agents", Journal of Scheduling, 2013; 16(3): 261-271.
    [20] Garey, M. R., D. S. Johnson, and L. Stockmeyer, "Some simplified NP-complete graph problems", Theoretical computer science, 1976; 1(3): 237-267.
    [21] Henderson, S. G. and B. L. Nelson, "Handbooks in operations research and management science: simulation", Volume 13, 2006.
    [22] Knotts, G., M. Dror, and B. C. Hartman, "Agent-based project scheduling", Iie Transactions, 2000; 32(5): 387-401.
    [23] Konak, A., D. W. Coit, and A. E. Smith, "Multi-objective optimization using genetic algorithms: A tutorial", Reliability Engineering & System Safety, 2006; 91(9): 992-1007.
    [24] Lee, W. C., S. K. Chen, C. W. Chen, and C. C. Wu, "A two-machine flowshop problem with two agents", Computers & Operations Research, 2011; 38(1): 98-104.
    [25] Lee, W. C., S. K. Chen, and C. C. Wu, "Branch-and-bound and simulated annealing algorithms for a two-agent scheduling problem", Expert Systems with Applications, 2010; 37(9): 6594-6601.
    [26] Lee, W. C., Y. H. Chung, and M. C. Hu, "Genetic algorithms for a two-agent single-machine problem with release time", Applied Soft Computing, 2012; 12(11): 3580-3589.
    [27] Lei, D., "Variable neighborhood search for two-agent flow shop scheduling problem", Computers & Industrial Engineering, 2015; 80: 125-131.
    [28] Li, S. and J. Yuan, "Unbounded parallel-batching scheduling with two competitive agents", Journal of Scheduling, 2012; 15(5): 629-640.
    [29] Li, S. and J. Yuan, "Unbounded parallel-batching scheduling with two competitive agents", Journal of Scheduling, 2012; 15(5): 629-640.
    [30] Liu, P., N. Yi, X. Zhou, and H. Gong, "Scheduling two agents with sum-of-processing-times-based deterioration on a single machine", Applied Mathematics and Computation, 2013; 219(17): 8848-8855.
    [31] Luo, W., L. Chen, and G. Zhang, "Approximation schemes for two-machine flow shop scheduling with two agents", Journal of Combinatorial Optimization, 2012; 24(3): 229-239.
    [32] Mor, B. and G. Mosheiov, "Polynomial time solutions for scheduling problems on a proportionate flowshop with two competing agents", Journal of the Operational Research Society, 2014; 65(1): 151-157.
    [33] Mostaghim, S. and J. Teich. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). in Swarm Intelligence Symposium, 2003. SIS'03. Proceedings of the 2003 IEEE. 2003. IEEE.
    [34] Nawaz, M., E. E. Enscore, and I. Ham, "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem", Omega, 1983; 11(1): 91-95.
    [35] Pan, Q., L. Wang, and B. Qian, "A novel multi-objective particle swarm optimization algorithm for no-wait flow shop scheduling problems", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2008; 222(4): 519-539.
    [36] Ramezanian, R., M. Aryanezhad, and M. Heydari, "A Mathematical Programming Model for Flow Shop Scheduling Problems for Considering Just in Time Production", International Journal of Industrial Engineering, 2010; 21(2).
    [37] Schultz, D., S. H. Oh, C. F. Grecas, M. Albani, J. Sanchez, C. Arbib, V. Arvia, M. Servilio, F. Del Sorbo, and A. Giralda. A QoS concept for packet oriented S-UMTS services. in IST Mobile and Wireless Telecommunications Summit. 2002.
    [38] Vallada, E., R. Ruiz, and G. Minella, "Minimising total tardiness in the m-machine flowshop problem: A review and evaluation of heuristics and metaheuristics", Computers & Operations Research, 2008; 35(4): 1350-1373.
    [39] Wu, C. C., S. K. Huang, and W. C. Lee, "Two-agent scheduling with learning consideration", Computers & Industrial Engineering, 2011; 61(4): 1324-1335.
    [40] Wu, W. H., J. Xu, W. H. Wu, Y. Yin, I. F. Cheng, and C. C. Wu, "A tabu method for a two-agent single-machine scheduling with deterioration jobs", Computers & Operations Research, 2013; 40(8): 2116-2127.
    [41] Yin, Y., S. R. Cheng, T. Cheng, C. C. Wu, and W. H. Wu, "Two-agent single-machine scheduling with assignable due dates", Applied Mathematics and Computation, 2012; 219(4): 1674-1685.
    [42] Zhao, K. and X. Lu, "Approximation schemes for two-agent scheduling on parallel machines", Theoretical Computer Science, 2013; 468: 114-121.
    [43] Zitzler, E., K. Deb, and L. Thiele, "Comparison of multiobjective evolutionary algorithms: Empirical results", Evolutionary computation, 2000; 8(2): 173-195.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE