研究生: |
謝熒 Xie, Ying |
---|---|
論文名稱: |
應用多目標粒子群演算法於二代理人流程型生產排程問題 Multi-Objective Particle Swarm Optimization Algorithm for Two-Agent Flow Shop Scheduling Problem |
指導教授: |
林則孟
James T. Lin |
口試委員: |
陳盈彥
陳勝一 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 多代理人排程 、多目標粒子群演算法 、流程型生產排程問題 |
外文關鍵詞: | Multi-agent scheduling, Flow shop scheduling problem, Multi-objective Particle Swarm Optimization |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對流程型生產系統,探討多代理人排程。多代理人排程是指將工件分成多個子集合,子集合分別屬於不同的代理人,代理人有各自的目標。本研究探討二代理人於多機台流程型生產系統,欲決定待加工工件進入系統之順序排程。考量到待加工工件分別屬於兩個代理人,代理人1、2的目標函數分別設定為最大完工時間和總延遲時間,兩個代理人之間會競爭生產資源的使用權。因此,在排程時需綜合考量所有代理人的目標,使得排程方案為所有代理人接受。
本研究採用Pareto最優的觀念同時考量兩個代理人的目標,目的是找出一組Pareto最優的排程方案。研究方法為利用模擬軟體在考量所有機台、工件、代理人等資訊後,建構相應的模擬模式,以評估排程績效。接著,在面臨可行解空間過大時,設計多目標粒子群演算法(Multi-Objective Particle Swarm Optimization,MOPSO)進行最佳方案的搜尋;為了改善MOPSO收斂性差的不足,本研究從問題的二代理人特性出發,在粒子群的設定、粒子位置更新機制、Pbest更新機制和初始解的產生等方面進行改進,提出基於代理人的多目標粒子群演算法(Agent-based Multi-Objective Particle Swarm Optimization,AMOPSO)。本研究對兩種演算法進行參數分析,以提高搜尋效率和求解品質。
最後,比較兩種算法和變動鄰域搜尋(Variable Neighborhood Search)在此問題上的求解性能,研究結果顯示,基於代理人的多目標粒子群演算法可以求得在距離、範圍和多樣性指標上表現較佳的解。
In this research, we study the multi-agent scheduling problem in flow shop environment. In a multi-agent scheduling problem, the set of jobs is divided into several subsets. There are several agents, each interested in a subset of jobs and has its own objective. In this paper flow shop scheduling problem with two agents is considered, in which the processing sequence of all jobs is to be determined. Each job belongs to either of the agents, the objective function of agent 1 is the makespan of its jobs and agent 2 is the total tardiness of its jobs. Two agents have to compete on the use of common processing resources. Every agent’s objective must be considered in the scheduling of jobs and the final schedule must be acceptable to all agents.
Two agents’ objectives are measured in Pareto optimality and final result is a set of Pareto optimal scheduling solutions. A simulation model including information of machines, jobs and agents is constructed to evaluate performances. The search of optimal solutions in problems with large feasible solution space is through Multi-Objective Particle Swarm Optimization. Due to the low convergence of MOPSO, we propose new swarm setting, position updating, personal best position updating and initialization operations based on two-agent features. The improved new algorithm is called Agent-based MOPSO. The parameter analysis is conducted to determine the best parameter combination in searching efficiency and solution quality.
In the end, two MOPSO algorithms are compared with Variable Neighborhood Search in two-agent flow shop scheduling problem. Results show that Agent-based MOPSO performs better than the other two algorithms in distance metric, space metric and diversity metric in this problem.
[1] 林則孟,「系統模擬─理論與應用」,滄海書局,2001。
[2] 雷德明 嚴新平,「多目標智能優化算法及其應用」,科學出版社,2009。
[3] Adibi, M., M. Zandieh, and M. Amiri, "Multi-objective scheduling of dynamic job shop using variable neighborhood search", Expert Systems with Applications, 2010; 37(1): 282-287.
[4] Agnetis, A., J.C. Billaut, S. Gawiejnowicz, D. Pacciarelli, and A. Souhal, "Multi-agent scheduling", Berlin Heidelberg: Springer Berlin Heidelberg. doi, 2014; 10(1007): 978-3.
[5] Agnetis, A., P. B. Mirchandani, D. Pacciarelli, and A. Pacifici, "Scheduling problems with two competing agents", Operations Research, 2004; 52(2): 229-242.
[6] Alvarez-Benitez, J. E., R. M. Everson, and J. E. Fieldsend. A MOPSO algorithm based exclusively on pareto dominance concepts. in International Conference on Evolutionary Multi-Criterion Optimization. 2005. Springer.
[7] Baker, K. R. and J. C. Smith, "A multiple-criterion model for machine scheduling", Journal of Scheduling, 2003; 6(1): 7-16.
[8] Brewer, P. J. and C. R. Plott, "A binary conflict ascending price (BICAP) mechanism for the decentralized allocation of the right to use railroad tracks", International Journal of Industrial Organization, 1996; 14(6): 857-886.
[9] Carson, I. and S. John. AutoStat: output statistical analysis for AutoMod users. in Proceedings of the 28th conference on Winter simulation. 1996. IEEE Computer Society.
[10] Cheng, T. E., S.R. Cheng, W. H. Wu, P. H. Hsu, and C. C. Wu, "A two-agent single-machine scheduling problem with truncated sum-of-processing-times-based learning considerations", Computers & Industrial Engineering, 2011; 60(4): 534-541.
[11] Cheng, T. E., Y. H. Chung, S.C. Liao, and W. C. Lee, "Two-agent singe-machine scheduling with release times to minimize the total weighted completion time", Computers & Operations Research, 2013; 40(1): 353-361.
[12] Cheng, T. E., C. Ng, and J. Yuan, "Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs", Theoretical Computer Science, 2006; 362(1): 273-281.
[13] Cheng, T. E., C. Ng, and J. Yuan, "Multi-agent scheduling on a single machine with max-form criteria", European Journal of Operational Research, 2008; 188(2): 603-609.
[14] Chiang, T. C., H. C. Cheng, and L. C. Fu, "NNMA: An effective memetic algorithm for solving multiobjective permutation flow shop scheduling problems", Expert systems with applications, 2011; 38(5): 5986-5999.
[15] Coello, C. A. C., G. T. Pulido, and M. S. Lechuga, "Handling multiple objectives with particle swarm optimization", IEEE Transactions on evolutionary computation, 2004; 8(3): 256-279.
[16] Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE transactions on evolutionary computation, 2002; 6(2): 182-197.
[17] Eberhart, R. and J. Kennedy, "A new optimizer using particle swarm theory, Proceedings of the Sixth International Symposium on Micro Machine and Human Science: Oct 1995", 1995.
[18] Elvikis, D., H. W. Hamacher, and V. T’kindt, "Scheduling two agents on uniform parallel machines with makespan and cost functions", Journal of Scheduling, 2011; 14(5): 471-481.
[19] Fan, B., T. E. Cheng, S. Li, and Q. Feng, "Bounded parallel-batching scheduling with two competing agents", Journal of Scheduling, 2013; 16(3): 261-271.
[20] Garey, M. R., D. S. Johnson, and L. Stockmeyer, "Some simplified NP-complete graph problems", Theoretical computer science, 1976; 1(3): 237-267.
[21] Henderson, S. G. and B. L. Nelson, "Handbooks in operations research and management science: simulation", Volume 13, 2006.
[22] Knotts, G., M. Dror, and B. C. Hartman, "Agent-based project scheduling", Iie Transactions, 2000; 32(5): 387-401.
[23] Konak, A., D. W. Coit, and A. E. Smith, "Multi-objective optimization using genetic algorithms: A tutorial", Reliability Engineering & System Safety, 2006; 91(9): 992-1007.
[24] Lee, W. C., S. K. Chen, C. W. Chen, and C. C. Wu, "A two-machine flowshop problem with two agents", Computers & Operations Research, 2011; 38(1): 98-104.
[25] Lee, W. C., S. K. Chen, and C. C. Wu, "Branch-and-bound and simulated annealing algorithms for a two-agent scheduling problem", Expert Systems with Applications, 2010; 37(9): 6594-6601.
[26] Lee, W. C., Y. H. Chung, and M. C. Hu, "Genetic algorithms for a two-agent single-machine problem with release time", Applied Soft Computing, 2012; 12(11): 3580-3589.
[27] Lei, D., "Variable neighborhood search for two-agent flow shop scheduling problem", Computers & Industrial Engineering, 2015; 80: 125-131.
[28] Li, S. and J. Yuan, "Unbounded parallel-batching scheduling with two competitive agents", Journal of Scheduling, 2012; 15(5): 629-640.
[29] Li, S. and J. Yuan, "Unbounded parallel-batching scheduling with two competitive agents", Journal of Scheduling, 2012; 15(5): 629-640.
[30] Liu, P., N. Yi, X. Zhou, and H. Gong, "Scheduling two agents with sum-of-processing-times-based deterioration on a single machine", Applied Mathematics and Computation, 2013; 219(17): 8848-8855.
[31] Luo, W., L. Chen, and G. Zhang, "Approximation schemes for two-machine flow shop scheduling with two agents", Journal of Combinatorial Optimization, 2012; 24(3): 229-239.
[32] Mor, B. and G. Mosheiov, "Polynomial time solutions for scheduling problems on a proportionate flowshop with two competing agents", Journal of the Operational Research Society, 2014; 65(1): 151-157.
[33] Mostaghim, S. and J. Teich. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). in Swarm Intelligence Symposium, 2003. SIS'03. Proceedings of the 2003 IEEE. 2003. IEEE.
[34] Nawaz, M., E. E. Enscore, and I. Ham, "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem", Omega, 1983; 11(1): 91-95.
[35] Pan, Q., L. Wang, and B. Qian, "A novel multi-objective particle swarm optimization algorithm for no-wait flow shop scheduling problems", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2008; 222(4): 519-539.
[36] Ramezanian, R., M. Aryanezhad, and M. Heydari, "A Mathematical Programming Model for Flow Shop Scheduling Problems for Considering Just in Time Production", International Journal of Industrial Engineering, 2010; 21(2).
[37] Schultz, D., S. H. Oh, C. F. Grecas, M. Albani, J. Sanchez, C. Arbib, V. Arvia, M. Servilio, F. Del Sorbo, and A. Giralda. A QoS concept for packet oriented S-UMTS services. in IST Mobile and Wireless Telecommunications Summit. 2002.
[38] Vallada, E., R. Ruiz, and G. Minella, "Minimising total tardiness in the m-machine flowshop problem: A review and evaluation of heuristics and metaheuristics", Computers & Operations Research, 2008; 35(4): 1350-1373.
[39] Wu, C. C., S. K. Huang, and W. C. Lee, "Two-agent scheduling with learning consideration", Computers & Industrial Engineering, 2011; 61(4): 1324-1335.
[40] Wu, W. H., J. Xu, W. H. Wu, Y. Yin, I. F. Cheng, and C. C. Wu, "A tabu method for a two-agent single-machine scheduling with deterioration jobs", Computers & Operations Research, 2013; 40(8): 2116-2127.
[41] Yin, Y., S. R. Cheng, T. Cheng, C. C. Wu, and W. H. Wu, "Two-agent single-machine scheduling with assignable due dates", Applied Mathematics and Computation, 2012; 219(4): 1674-1685.
[42] Zhao, K. and X. Lu, "Approximation schemes for two-agent scheduling on parallel machines", Theoretical Computer Science, 2013; 468: 114-121.
[43] Zitzler, E., K. Deb, and L. Thiele, "Comparison of multiobjective evolutionary algorithms: Empirical results", Evolutionary computation, 2000; 8(2): 173-195.