簡易檢索 / 詳目顯示

研究生: 范佳銘
Fan,Chia-Ming
論文名稱: 發展金屬奈米粒子及奈米線以及其應用於染料敏化太陽能電池之研究
Development of Metallic Nanoparticles and Nanowires for Dye-Sensitized Solar Cell Applications
指導教授: 林滄浪
Lin,Tsang-Lang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 111
中文關鍵詞: 奈米線奈米顆粒染料敏化太陽能電池
外文關鍵詞: nanowires, nanoparticles, dye-sensitized solar cell
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本項研究主要為發展染料敏化太陽能電池用的二氧化鈦電極結構中添加入金屬奈米粒子或線以改善太陽電池效能。我們用Polyol Process製備出高產率的銀奈米線,並可以銀奈米線為模板進一步藉由Au+離子取代銀原子而形成中空結構的金奈米管,以及以金離子還原方法成長金粒子。以及利用sol-gel法製作出包覆二氧化鈦顆粒的銀奈米線。經由SEM,TEM可以觀察所製成的金屬奈米粒子及線的形貌及大小。同時也用XRD量測所製成的二氧化鈦的晶相。我們利用所成長的金屬奈米粒子及線應用在染料敏化太陽能電池,研究加入金屬奈米粒子及線與商用二氧化鈦奈米顆粒(P-25)混合電極對染料敏化太陽電池效能的影響。研究結果顯示不論是添加銀奈米線、銀奈米線/二氧化鈦、金奈米顆粒、金奈米管至二氧化鈦電極中,都明顯看到隨著金屬材料添加量增加,太陽能電池的短路電流密度和效率皆有提升的趨勢,其中以添加1 wt%金奈米管的染料敏化電池效果最好,其短路電流密度由9.49 mA/cm2增加至11.77 mA/cm2,太陽能電池效率亦從3.68 %提升至4.27 %。顯示添加金屬奈米粒子或線皆可提升染料敏化電池的電子傳導及提升整體的效能。


    One way of improving the efficiency of dye-sensitized solar cell (DSSC) is to add small amounts of metallic nanoparticles or nanowires in the electrode to improve the electron transport efficiency. We used the Polyol process to grow silver nanowires and also to synthesize gold nanotubes using the silver nanowires as the templates. TiO2 nanoparticles were coated on the surface of nanowires by sol-gel method. XRD, as well as SEM and TEM were used to characterize the synthesized composite nanostructures. Instead of forming a thin titanium dioxide film, it was found that titanium dioxide nanoparticles were formed on the surface of the silver nanowires. This is advantageous since the total surface area would become much larger as compared with the coating of a smooth thin titanium dioxide film on the silver nanowires. DSSC were fabricated with the addition of silver nanowires, silver nanowires coated with TiO2 nanoparticles, gold nanoparticles, and gold nanowires mixed with the commercial P25 TiO2 nanoparticles, respectively. The open circuit current was improved for all the cases of adding the metallic nanomaterials. The largest improvement was achieved by adding 1 wt% (relative to P25 TiO2 nanoparticles, the highest weight percent case) gold nanotubes. The open circuit current was increased from 9.49 mA/cm2 to 1.77 mA/cm2 and efficiency was increased from 3.68% to 4.27%.

    Keywords: nanoparticles, nanowires, dye-sensitized solar cell

    摘要……………………………………………………………….……...I 致謝..........................................................................................................III 目錄……………………………………………………………………. IV 圖目錄………………………………………………………...………..VII 表目錄………………………………………………………………...XIV 第一章 序論………………………………………...………….….1 1.1 前言………………………………………………………………….1 1.2 研究動機…………………………………………………………….3 第二章 文獻回顧………………………………………………..9 2.1 染料敏化太陽能電池工作原理…………………………………….9 2.1.1 多孔性二氧化鈦薄膜………………………………………12 2.1.2 染料敏化劑…………………….…………………………...13 2.1.3 電解質………………………………………………………16 2.1.4 鍍白金之電極………………………………………………17 2.2 一維奈米金屬結構的製備……………………...…………………18 2.2.1 Polyol Process製備銀奈米結構…………………………….18 2.2.2 製備金奈米結構……………………………………………27 2.3 二氧化鈦結構的製備……………………………………………...31 第三章 實驗方法…………………………………………………38 3.1 實驗藥品…………………………………………………………...38 3.2 實驗流程…………………………………………………………...39 3.2.1 製備一維奈米金屬結構……………………………………39 3.2.2 製備二氧化鈦/金屬結構…………………………………...40 3.2.3 組裝染料敏化太陽能電池流程……………………………40 3.3 實驗儀器…………………………………………………………...42 3.3.1 掃描式電子顯微鏡…………………………………………42 3.3.2 穿透式電子顯微鏡…………………………………………46 3.3.3 X光粉末繞射………………………………………………..47 3.3.4 I-V曲線量測儀器…………………………………………...48 3.3.5 全波段入射光子轉換效率光度計(IPCE)………………….50 3.3.6 紫外-可見光光譜儀………………………………………...51 第四章 結果與討論 4.1 金屬奈米結構之製備……………………………………………...52 4.1.1 不同PVP分子量對銀奈米線成長的影響…………………52 4.1.2 不同PVP濃度對成長銀奈米線的影響……………………56 4.1.3 添加白金奈米粒子預作晶種成長銀奈米線………………58 4.1.4 測試銀奈米線融點…………………………………………60 4.1.5 製備金奈米管中空結構……………………………………62 4.1.6 金離子濃度對金奈米管的影響 …………………………..68 4.2 二氧化鈦之製備…………………………………………………...71 4.2.1 銀奈米線對二氧化鈦成相的影響…………………………71 4.2.2 不同燒結溫度對二氧化鈦膠體的影響……………………73 4.2.3 碘電解液對銀奈米線的影響……………………………....75 4.2.4 碘電解液對金奈米棒/奈米粒子的影響…………………...79 4.3 組裝染料敏化太陽能電池……………………………………….. 81 4.3.1 加入銀奈米線至二氧化鈦電極的影響……………………81 4.3.2 加入銀奈米線/TiO2 gel至二氧化鈦電極的影響…………85 4.3.3 加入金奈米顆粒至二氧化鈦電極的影響…………………90 4.3.4 加入金奈米管至二氧化鈦電極的影響……………………97 4.3.5 加入不同金屬奈米材料至電極的IPCE量測……………100 第五章 結論………………………………………………………104 參考文獻……………………………………………………………106 附錄......................................................................................................109

    [1] M. Grätzel, Nature, 2001, 414, 338.-344
    [2] M. Law, L. E. Green, J.C. Johnson, R. Saykally and P. Yang, Nature Meterials, 2005, 4, 455-459.
    [3] B. Tan, Y. Wu, J. Phys. Chem. B, 2006, 110, 15932-15938
    [4] J.B. Baxter and E.S. Aydil, Appl. Phys. Lett., 2005, 86, 053114.
    [5] T.Y. Lee, P.S. Alegaonkar and J.B. Yoo, Thin Solid Films, 2007, 515, 5131-5135
    [6] S. Barazziuk and S. Hotchandani, J. Appl. Phys., 2004, 12, 7744.
    [7] C. Wen, K. Ishikawa, M. Kishima, K. Yamada, Solar Energy Materials & Solar Cell, 2000, 61, 339-351.
    [8] B. O’Regan and M. Grätzel, Nature, 1991, 353, 737-740
    [9] M. Grätzel, Nature, 2001, 414, 338-344
    [10] M. Grätzel, J. Photochem. And Photobio. A:chem., 2004, 164, 3-14
    [11] 張正華,李陵嵐,葉楚平,楊平華 著, 有機與塑膠太陽能電池,五南出版社,2007年。
    [12] J. Ferber, R. Stangl and J. Luther, Solar Energy Materials and Solar Cells, 1998, 53, 29-54
    [13] S. Nakade, Y. Makimoto, W. Kubo, T. Kitamur, Yuji Wasa, and Shozo Yanagida, J. Phys. Chem. B, 2005, 109, 3480-3487
    [14] J. Desilvestro, M. Grätzel, L. Kavan, and J. Moser, J. Am. Chem Soc., 1985, 107, 2988-2990
    [15] 呂怡萱,二氧化鈦奈米管於染料敏化太陽能電池之探討,國立中央大學化學研究所碩士論文,2006年。
    [16] N. Takurous, Y.K.Murakami, K. Norimichi and M. Tsutomu, J. Photochem. And Photobio. A:chem., 2003, 164, 187-191
    [17] H. Han, X. Zhao and J. Liu, J. Electrochem. Soc., 2005, 152. 164-166
    [18] M. Zukalova, A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liskam, and M. Grätzel, Nano letters, 2005, 5, 1789-1792
    [19] M.K. Nazeeruddin, S.M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.H. Foscher, N. Vlachopoulos, V. Shklover, C.H. Fischer, and M. Grätzel, Inog. Chem., 1999, 38, 6298-6305
    [20] C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Graetzel, J. Am. Chem. Soc., 1997, 80, 3157-3171
    [21] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Grätzel , J. Am. Chem. Soc., 1993, 115, 6382-6390.
    [22] M.K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Graetzel, J. Am. Chem. Soc., 2005, 127, 16835.
    [23] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide and L. Han,
    Jpn. J. Appl. Phys., 2006, 45 (25), L638-L640
    [24] http://www.solaronix.com/the_dye_solar_cells.htm
    [25] U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Grätzel, Nature, 1998, 395, 583.
    [26] B. O’Regan and D.T. Schwartz, Chem. Mater., 1998, 10, 1501-1509.
    [27] B. O’Regan and D.T. Schwartz, J. Appl. Phys., 1996, 80, 4749-4754.
    [28] B. O’Regan, D.T. Schwartz, S.M. Zakeeruddin and M. Grätzel, Adv. Mater., 2000, 12, 1263-1267.
    [29] Y. Liu, A. Hagfeld, X. Xiao and S. Lindquist, Sol. Energy Mater. Sol. Cells, 1998, 55, 267-281.
    [30] K. Hara, Sol. Energy Mater. Sol. Cells, 2000, 33, 269-277.
    [31] Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen and Q. Meng, Electrochemistry Communication, 2007, 9, 596-598.
    [32] E. Ramasamy, W. J. Lee, D.Y. Lee and J. S. Song, Appl. Phys. Lett., 2007, 90, 173103.
    [33] W. G. Lee, E. Ramasamy, D. Y. Lee and J. S. Song, Journal of Photochemistry and Photobiology A:Chemistry, 2008, 194, 27-30.
    [34] Y. Sun, B. Mayer, T. Herrick, and Y. Xia, Nano Letters, 2003, 3, 955-960
    [35] Y. Sun and Y. Xia, Adv. Mater, 2002, 11, 833-836
    [36] Y. Sun, Y. Yin, B. T. Mayer, T. Herrick, and Y. Xia, Chem. Mater., 2002, 14, 4736-4745.
    [37] Y. Sun, B. Gates, B. Mayers, and Y. Xia, Nano Lett., 2002, 2, 165-168
    [38] Y. Sun and Y. Xia, Science, 2002, 298, 2176-2179
    [39] J. H. Lee, K. K., N. Enomoto, and J. Hojo, Chemistry Letters, 2007, 36, 392-393.
    [40] Y. Sun, B.T. Mayers, and Y. Xia, Nano Lett., 2002, 2, 481-485.
    [41] Y. Sun, B. Mayers, Y. Xia, Adv. Mater., 2003, 15, 641-646
    [42] Y. Sun, Y. Xia, J. Am. Chem. Soc., 2004, 128, 3892-3901
    [43] Y. Sun, Y. Xia, Adv. Mater., 2004, 16, 264-268.
    [44] 高濂、鄭珊、張青紅,奈米光觸媒,五南出版社,2004年。
    [45] 林正得,二氧化鈦奈米微粒進來光催化金屬還原以形成核-殼結構之研究,清華大學材料研究所碩士論文,2001年。
    [46] G..Q. Liu, Z.G. Jin, X.X. Liu, T. Wang, and Z.F. Liu, J. Sol-Gel.Sci. Techn. , 2007, 41, 49
    [47] J. Qiu, Z. Jin, X. Liu, G. Liu, W. Yu, X. Zhang , and X. Gao, Thin Solid Films, 2007, 515, 2897
    [48] J. Qiu, W. Yu, X. Gao, and X. Li, Nanotechology, 2006, 17, 4695
    [49] J. Qiu, W. Yu, X. Gao and X. Li, Nanotechology, 2007, 18, 295604
    [50] 汪建民 主編,材料分析,中國材料科學學會,1998年。
    [51] 廖硯韜,利用電漿輔助氣相沉積及高溫化學氣相沉積二次成長奈米碳管,國立清華大學工程與系統科學研究所碩士論文,2007年。
    [52] 廖秉彥,利用晶種還原法製備銀奈米粒子研究,國立清華大學工程與系統科學研究所碩士論文,2006年。
    [53] http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/bragg.html
    [54] http://www.matter.org.uk/diffraction/x-ray/powder_method.htm

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE