研究生: |
林裕凱 Lin, Yu-Kai |
---|---|
論文名稱: |
金球陣列鑲嵌矽基電漿子奈米天線之製備與波長選擇性光開關特性研究 Fabrication of Au-Nanocrystal-Array/Si Plasmonic Nanoantennas and Their Wavelength-Selective Photoswitching Property |
指導教授: |
陳力俊
Chen, Lih-Juann 周立人 Chou, Li-Jen |
口試委員: |
陳力俊
Chen, Lih-Juann 果尚志 Gwo, Shangjr 蔡哲正 Tsai, Cho-Jen 吳文偉 Wu, Wen-Wei 李勝偉 Lee, Sheng-Wei |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 76 |
中文關鍵詞: | 局部表面電漿共振 、光響應 、金屬奈米晶體陣列 、金屬協助化學蝕刻 、具波長選擇性光學開關 |
外文關鍵詞: | localized surface plasmon resonance, photoresponce, metal nanocrystal array, metal-assisted chemical etching, wavelength-selective photoswitches |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們以一種結合膠體粒子微影法與金屬催化化學蝕刻法的方式第一次成功的製備出具有金球陣列鑲嵌之矽基電漿子奈米天線,而這種製備方法具有容易且所需成本不昂貴的優點。金球陣列鑲嵌之矽基電漿子奈米天線主要是將金奈米晶體陣列以可調控的包埋深度鑲嵌進矽基板所構成,而且此奈米天線的光電流增益特性具有光波長選擇性。
在金球陣列鑲嵌之矽基電漿子奈米天線的製作過程中,金屬催化化學蝕刻法被用來調控金奈米晶體鑲嵌進矽基板的深度,藉此讓奈米天線展現出局部表面電漿子共振光響應特性與波長選擇性光電流增益特性。相較於一般電漿子奈米天線是將金奈米顆粒置於矽基板表面,金球陣列鑲嵌之矽基電漿子奈米天線的強近場增強效應會隨金奈米晶體陣列鑲嵌的深度增加而變強。除此之外,由於局部表面電漿子共振光響應特性容易因周圍環境的介電常數的不同而改變,所以藉著調整金奈米晶體陣列的鑲嵌深度,我們可以控制此奈米天線的光響應特性。
在此論文中,我們利用有限差分時域法來模擬奈米天線的近場分佈,藉此驗證此種奈米天線所具有的波長選擇性光電流增益特性是來自於金奈米晶體的局部表面電漿子共振所引發在其周圍的矽產生局部電場增益。同時論文實驗的結果中,奈米天線局部表面電漿子共振波長的最大值也相當符合模擬結果。
我們利用不同波段的雷射在暗場條件上進行各組奈米天線的波長選擇性光電流增益的測量。在多次雷射光開關循環下的再現性測試可以證明此類型奈米天線可做為光學開關元件。實驗結果顯示,當具有不同金奈米晶體陣列鑲嵌深度的多組奈米天線照射到符合其局部表面電漿子共振波長最大值的雷射光時,在小於200毫伏的偏壓下,具有波長選擇性的光電流增益可高達70 %。此外,實驗的趨勢也符合有限差分時域法的模擬,證明出金奈米晶體產生的局部電場增益增加周圍矽的光吸收能力,因此具有波長選擇性光電流增益特性。
最後,金球陣列鑲嵌之矽基電漿子奈米天線在局部表面電漿子共振光響應特性與具有波長選擇性光電流增益特性有很好的調控能力,這樣的特性可應用於低功耗奈米光學開關、奈米光電與光學通訊裝置上,此外,此奈米天線的製程也可以很容易的與現今矽半導體製程技術結合。
Au-nanocrystal-array/silicon nanoantennas exhibiting wavelength-selective photocurrent enhancement were successfully fabricated by a facile and inexpensive method combining colloidal lithography (CL) and a metal-assisted chemical etching (MaCE) process for the first time. These nanoantennas comprise Au nanocrystal arrays inlaid in silicon substrates with controllable degree of immersion.
The localized surface plasmon resonance (LSPR) response and wavelength- selective photocurrent enhancement characteristics were achieved by tuning the depth of immersion of Au nanocrystal arrays in silicon through a MaCE process. Compared to conventional Au particles on Si, the high near-field enhancement increases with the fraction of their volume in intimate contact with the substrate in the Au nanocrystal array inlaid Si structure. On the other hand, LSPR responses, which are extremely sensitive to dielectric properties of metal and the surrounding environment, can be tuned by the depth of immersion of Au nanocrystal array on/in silicon.
The wavelength selectivity of photocurrent enhancement contributed by LSPR induced local field amplification was confirmed by simulated near-field distribution. The wavelength maximum of LSPR scattering (max) exhibits sensitivity to the surrounding environment and shows consistence with the simulated results obtained by the finite-difference time-domain (FDTD) method.
The wavelength-selective photocurrent enhancement characteristics were measured under illumination of lasers of different wavelengths and under dark conditions. In addition, the repeatability of wavelength-selective photocurrent enhancement was also tested by multiple ON/OFF cycles and can be exploited as photoswitches. The wavelength-selective photocurrent enhancement (>70 %) operated under low voltage (<200 mV) was achieved under laser illumination coincident to its LSPR max. In addition, the wavelength-selective photocurrent enhancement can be elucidated by the FDTD simulations of the near-field enhancements (|E|^2), which can intensify local electromagnetic field and optical absorption. The good tunability over LSPR responses and wavelength-selective photocurrent enhancement characteristics can be exploited as low power-consumption photoswitches and nano-optoelectronic and photonic communication devices. Furthermore, it can be integrated into the well-developed Si-based manufacturing process.
[1] R.P. Feynman, There's Plenty of Room at the Bottom, Engineering and Science, 23 (1960) 22-36.
[2] K.E. Drexler, Engines of Creation: The Coming Era of Nanotechnology, Doubleday, London, 1986.
[3] Scale of Things Chart, designed by the Office of Basic Energy Sciences, http://science.energy.gov/bes/news-and-resources/scale-of-things-chart/.
[4] W. Lu, C.M. Lieber, Nanoelectronics from the Bottom up, Nature Materials, 6 (2007) 841-850.
[5] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985) 162-163.
[6] L. Brus, Quantum Crystallites and Nonlinear Optics, Applied Physics A, 53 (1991) 465-474.
[7] S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 354 (1991) 56-58.
[8] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Advanced Materials, 15 (2003) 353-389.
[9] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) 666-669.
[10] A.K. Geim, Graphene: Status and Prospects, Science, 324 (2009) 1530-1534.
[11] K. Saito, J. Nakamura, A. Natori, Ballistic Thermal Conductance of a Graphene Sheet, Physical Review B, 76 (2007) 115409.
[12] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically Thin MoS2: A New Direct-Gap Semiconductor, Physical Review Letters, 105 (2010) 136805.
[13] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-Layer MoS2 Transistors, Nature Nanotechnology, 6 (2011) 147-150.
[14] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides, Nature Nanotechnology, 7 (2012) 699-712.
[15] K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, L.-J. Li, Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates, Nano Letters, 12 (2012) 1538-1544.
[16] B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated Circuits and Logic Operations Based on Single-Layer MoS2, ACS Nano, 5 (2011) 9934-9938.
[17] R. Charbonneau, N. Lahoud, G. Mattiussi, P. Berini, Demonstration of Integrated Optics Elements Based on Long-Ranging Surface Plasmon Polaritons, Optics Express, 13 (2005) 977-984.
[18] K.A. Willets, R.P.V. Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing, Annual Review of Physical Chemistry, 58 (2007) 267-297.
[19] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, Berlin, 1988.
[20] V. Giannini, A.I. Fernandez-Domínguez, S.C. Heck, S.A. Maier, Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters, Chemical Reviews, 111 (2011) 3888-3912.
[21] C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.
[22] A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, J. Petrovic, Nanofabricated Media with Negative Permeability at Visible Frequencies, Nature, 438 (2005) 335-338.
[23] H. Ditlbacher, J.R. Krenn, G. Schider, A. Leitner, F.R. Aussenegg, Two-Dimensional Optics with Surface Plasmon Polaritons, Applied Physics Letters, 81 (2002) 1762-1764.
[24] S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.-Y. Laluet, T.W. Ebbesen, Channel Plasmon Subwavelength Waveguide Components Including Interferometers and Ring Resonators, Nature, 440 (2006) 508-511.
[25] T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays, Nature, 391 (1998) 667-669.
[26] T.R. Jensen, M.D. Malinsky, C.L. Haynes, R.P.V. Duyne, Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles, The Journal of Physical Chemistry B, 104 (2000) 10549-10556.
[27] S.M. Weekes, F.Y. Ogrin, W.A. Murray, P.S. Keatley, Macroscopic Arrays of Magnetic Nanostructures from Self-Assembled Nanosphere Templates, Langmuir, 23 (2007) 1057-1060.
[28] W.A. Murray, S. Astilean, W.L. Barnes, Transition from Localized Surface Plasmon Resonance to Extended Surface Plasmon-Polariton as Metallic Nanoparticles Merge to Horm a Periodic Hole Array, Physical Review B, 69 (2004) 165407.
[29] E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A Hybridization Model for the Plasmon Response of Complex Nanostructures, Science, 302 (2003) 419-422.
[30] V.E. Ferry, M.A. Verschuuren, H.B.T. Li, E. Verhagen, R.J. Walters, R.E.I. Schropp, H.A. Atwater, A. Polman, Light Trapping in Ultrathin Plasmonic Solar Cells, Optics Express, 18 (2010) A237-A245.
[31] V.E. Ferry, L.A. Sweatlock, D. Pacifici, H.A. Atwater, Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells, Nano Letters, 8 (2008) 4391-4397.
[32] R.A. Pala, J. White, E. Barnard, J. Liu, M.L. Brongersma, Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements, Advanced Materials, 21 (2009) 3504-3509.
[33] H.A. Atwater, A. Polman, Plasmonics for Improved Photovoltaic Devices, Nature Materials, 9 (2010) 205-213.
[34] V.E. Ferry, J.N. Munday, H.A. Atwater, Design Considerations for Plasmonic Photovoltaics, Advanced Materials, 22 (2010) 4794-4808.
[35] K. Nakayama, K. Tanabe, H.A. Atwater, Plasmonic Nanoparticle Enhanced Light Absorption in GaAs Solar Cells, Applied Physics Letters, 93 (2008) 121904-121906.
[36] H.R. Stuart, D.G. Hall, Island Size Effects in Nanoparticle-Enhanced Photodetectors, Applied Physics Letters, 73 (1998) 3815-3817.
[37] M.W. Knight, H. Sobhani, P. Nordlander, N.J. Halas, Photodetection with Active Optical Antennas, Science, 332 (2011) 702-704.
[38] H.-Y. Chen, C.-L. He, C.-Y. Wang, M.-H. Lin, D. Mitsui, M. Eguchi, T. Teranishi, S. Gwo, Far-Field Optical Imaging of a Linear Array of Coupled Gold Nanocubes: Direct Visualization of Dark Plasmon Propagating Modes, ACS Nano, 5 (2011) 8223-8229.
[39] G.F. Walsh, L.D. Negro, Engineering Plasmon-Enhanced Au Light Emission with Planar Arrays of Nanoparticles, Nano Letters, 13 (2013) 786-792.
[40] D.M. O'Carroll, C.E. Hofmann, H.A. Atwater, Conjugated Polymer/Metal Nanowire Heterostructure Plasmonic Antennas, Advanced Materials, 22 (2010) 1223-1227.
[41] Y.-K. Lin, H.-W. Ting, C.-Y. Wang, S. Gwo, L.-J. Chou, C.-J. Tsai, L.-J. Chen, Au Nanocrystal Array/Silicon Nanoantennas as Wavelength-Selective Photoswitches, Nano Letters, 13 (2013) 2723-2731.
[42] W.J. Cho, Y. Kim, J.K. Kim, Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility, ACS Nano, 6 (2012) 249-255.
[43] X. Xu, K. Kim, H. Li, D.L. Fan, Ordered Arrays of Raman Nanosensors for Ultrasensitive and Location Predictable Biochemical Detection, Advanced Materials, 24 (2012) 5457-5463.
[44] C.-H. Hsieh, L.-J. Chou, G.-R. Lin, Y. Bando, D. Golberg, Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires, Nano Letters, 8 (2008) 3081-3085.
[45] Y.-J. Wu, C.-H. Hsieh, P.-H. Chen, J.-Y. Li, L.-J. Chou, L.-J. Chen, Plasmon Resonance Spectroscopy of Gold-in-Gallium Oxide Peapod and Core/Shell Nanowires, ACS Nano, 4 (2010) 1393-1398.
[46] C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, S. Gwo, Plasmonic Green Nanolaser Based on a Metal-Oxide-Semiconductor Structure, Nano Letters, 11 (2011) 4256-4260.
[47] Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C.E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, Plasmonic Nanolaser Using Epitaxially Grown Silver Film, Science, 337 (2012) 450-453.
[48] Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, K. Kempa, Metamaterial-Plasmonic Absorber Structure for High Efficiency Amorphous Silicon Solar Cells, Nano Letters, 12 (2012) 440-445.
[49] H. Tan, R. Santbergen, A.H.M. Smets, M. Zeman, Plasmonic Light Trapping in Thin-film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles, Nano Letters, 12 (2012) 4070-4076.
[50] Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, X. Duan, Plasmon Resonance Enhanced Multicolour Photodetection by Graphene, Nature Communications, 2 (2012) 579.
[51] H. Nakanishi, K.J.M. Bishop, B. Kowalczyk, A. Nitzan, E.A. Weiss, K.V. Tretiakov, M.M. Apodaca, R. Klajn, J.F. Stoddart, B.A. Grzybowski, Photoconductance and Inverse Photoconductance in Films of Functionalized Metal Nanoparticles, Nature, 460 (2009) 371-375.
[52] Y.J. Hwang, A. Boukai, P. Yang, High Density n-Si/n-TiO2 Core/Shell Nanowire Arrays with Enhanced Photoactivity, Nano Letters, 9 (2009) 410-415.
[53] V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, Silicon Nanowire-Based Solar Cells on Glass: Synthesis, Optical Properties, and Cell Parameters, Nano Letters, 9 (2009) 1549-1554.
[54] A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced Thermoelectric Performance of Rough Silicon Nanowires, Nature, 451 (2008).
[55] B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang, X. Cheng, Large-Area Silver-Coated Silicon Nanowire Arrays for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy, Advanced Functional Materials, 18 (2008) 2348-2355.
[56] K. Tsujino, M. Matsumura, Boring Deep Cylindrical Nanoholes in Silicon Using Silver Nanoparticles as a Catalyst, Advanced Materials, 17 (2005) 1045-1047.
[57] O.J. Hildreth, W. Lin, C.P. Wong, Effect of Catalyst Shape and Etchant Composition on Etching Direction in Metal-Assisted Chemical Etching of Silicon to Fabricate 3D Nanostructures, ACS Nano, 3 (2009) 4033-4042.
[58] X. Li, P.W. Bohn, Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon, Applied Physics Letters, 77 (2000) 2572.
[59] Z. Huang, H. Fang, J. Zhu, Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density, Advanced Materials, 19 (2007) 744-748.
[60] C.-Y. Chen, C.-S. Wu, C.-J. Chou, T.-J. Yen, Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature, Advanced Materials, 20 (2008) 3811-3815.
[61] K. Peng, A. Lu, R. Zhang, S.-T. Lee, Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching, Advanced Functional Materials, 18 (2008) 3026-3035.
[62] M.-L. Zhang, K.-Q. Peng, X. Fan, J.-S. Jie, R.-Q. Zhang, S.-T. Lee, N.-B. Wong, Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching, The Journal of Physical Chemistry C, 112 (2008) 4444-4450.
[63] T. Inagaki, K. Kagami, E.T. Arakawa, Photoacoustic Observation of Nonradiative Decay of Surface Plasmons in Silver, physical Review B, 24 (1981) 3644-3646.
[64] T. Inagaki, K. Kagami, E.T. Arakawa, Photoacoustic Study of Surface Plasmons in Metals, Applied Optics, 21 (1982) 949-954.
[65] M.W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N.S. King, H.O. Everitt, P. Nordlander, N.J. Halas, Aluminum Plasmonic Nanoantennas, Nano Letters, 12 (2012) 6000-6004.
[66] S.-D. Liu, Z. Yang, R.-P. Liu, X.-Y. Li, Multiple Fano Resonances in Plasmonic Heptamer Clusters Composed of Split Nanorings, ACS Nano, 6 (2012) 6260-6271.
[67] Y. Jin, Engineering Plasmonic Gold Nanostructures and Metamaterials for Biosensing and Nanomedicine, Advanced Materials, 24 (2012) 5153-5165.
[68] H.-W. Ting, Y.-K. Lin, Y.-J. Wu, L.-J. Chou, C.-J. Tsai, L.-J. Chen, Large Area Controllable Hexagonal Close-Packed Single-Crystalline Metal Nanocrystal Arrays with Localized Surface Plasmon Resonance Response, Journal of Materials Chemistry C, 1 (2013) 3593-3599.
[69] P.J. Holmes, J.E. Snell, A Vapour Etching Technique for The Photolithography of Silicon Dioxide, Microelectronics Reliability, 5 (1966) 334-341.
[70] C.-Y. Liu, W.-S. Li, L.-W. Chu, M.-Y. Lu, C.-J. Tsai, L.-J. Chen, An Ordered Si Nanowire with NiSi2 Tip Arrays as Excellent Field Emitters, Nanotechnology, 22 (2011) 055603.
[71] Y.-H. Chen, W.-S. Li, C.-Y. Liu, C.-Y. Wang, Y.-C. Chang, L.-J. Chen, Three-Dimensional Heterostructured ZnSe Nanoparticles/Si Wire Arrays with Enhanced Photodetection and Photocatalytic Performances, Journal of Materials Chemistry C, 1 (2013) 1345-1351.
[72] K. Rykaczewski, O.J. Hildreth, C.P. Wong, A.G. Fedorov, J.H.J. Scott, Guided Three-Dimensional Catalyst Folding during Metal-Assisted Chemical Etching of Silicon, Nano Letters, 11 (2011) 2369-2374.
[73] P. Lianto, S. Yu, J. Wu, C.V. Thompsonad, W.K. Choi, Vertical Etching with Isolated Catalysts in Metal-Assisted Chemical Etching of Silicon, Nanoscale, 4 (2012) 7532-7539.
[74] R. Chen, D. Li, H. Hu, Y. Zhao, Y. Wang, N. Wong, S. Wang, Y. Zhang, J. Hu, Z. Shen, a.Q. Xiong, Tailoring Optical Properties of Silicon Nanowires by Au Nanostructure Decorations: Enhanced Raman Scattering and Photodetection, The Journal of Physical Chemistry C, 116 (2012) 4416-4422.
[75] S.H. Lim, W. Mar, P. Matheu, D. Derkacs, E.T. Yu, Photocurrent Spectroscopy of Optical Absorption Enhancement in Silicon Photodiodes via Scattering from Surface Plasmon Polaritons in Gold Panoparticles, Journal of Applied Physics, 101 (2007) 104309.