研究生: |
陳宥君 Chen, Yu-Chun |
---|---|
論文名稱: |
丙烯腈-丁二烯-苯乙烯共聚物之流變行為研究 Rheological Behavior of Acrylonitrile Butadiene Styrene (ABS plastic) |
指導教授: |
李雄略
Lee, Shong-Leih |
口試委員: |
陳志臣
Chen, Jyh-Chen 陳寒濤 Chen, Han-Taw |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 計算流體力學 、非牛頓流體 、ABS塑膠 、泛牛頓流體 |
外文關鍵詞: | CFD, Non-Newtonian fluid, ABS plastic, GNF |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
ABS塑膠之黏滯性受剪切率及溫度所影響,並非定值。根據目前已有之文獻,可知ABS塑膠在不同剪切率與溫度下之黏滯性實驗值。本研究以代數方程式與其實驗值進行曲線擬合,得出一ABS黏滯性數學模式,並利用此數學模式探討ABS平行流於等溫以及非等溫下之流變行為。對於牛頓流體而言,完全發展區之速度曲線最高值為1.5。而對於ABS而言,其在等溫情況下,由於黏滯性於壁面較低,故其完全發展區之速度曲線最高值低於1.5;在非等溫情況下,由於黏滯性於壁面較高,故其於完全發展區之速度曲線最高值則高於1.5。此外,本研究採用NAPPLE法,以避免交錯性網格造成速度與壓力坐落於不同網格上,而使之定義複雜。
The viscosity of ABS plastic is not a constant value which will be affected by shear rate and temperature. According to the present research, the viscosity of ABS plastic from experiment is already obtained. In this study, the algebraic equation is used to fit the experimental value. Based on this curve fitting, the ABS viscosity model is provided. With the viscosity model, the parallel flow of ABS plastic is investigated in isothermal and non-isothermal condition. For the parallel flow of Newtonian fluid, it is well known that the maximum value of the fully developed velocity profile is 1.5. However, for ABS plastic, the maximum value is lower than 1.5 in isothermal condition because the viscosity around plates is higher than center, on the other hand, the maximum value is higher than 1.5 in non-isothermal condition because the viscosity around plates is lower than center. In addition, the NAPPLE method is applied in this
study to avoid the disadvantage of staggered grids.
[1] Polymeric Material Properties, C-MOLD Reference Manual, Ch. 2, Advanced CAE Technology, New York (1997).
[2] C.Y. Khor, Z.M. Ariff, F. Che Ani, M. Abdul Mujeebu, M.K. Abdullah, M.Z. Abdullah and M.A. Joseph, “Three-dimensional numerical and experimental investigations on polymer rheology in meso-scale injection molding,” International Communications in Heat and Mass Transfer, 37, pp. 131-139 (2010).
[3] F. Irgens, Rheology and non-Newtonian fluids, Springer, Cham, Switzerland, pp.114-115 (2014).
[4] W. Kozicki, C.H. Chou and C. Tiu, “Non-Newtonian flow in ducts of arbitrary cross-sectional shape,” Chemical Engineering Science, 21, pp. 665-679 (1966).
[5] H.I. Andersson, J.B. Aarseth, N. Braud and B.S. Dandapat , “Flow of a power-law fluid film on an unsteady stretching surface,” J. Non-Newtonian Fluid Mech., 62, pp. 1-8 (1996).
[6] P.J. Carreau, Ph.D. Thesis, University of Wisconsin, Madison (1968).
[7] M. Cross, “Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems,” Journal of Colloid Science, 20, pp. 417-437(1965).
[8] H. A. Barnes and K. Walters, “The yield stress myth?,” Rheol Acta, 24, pp. 323-326(1985).
[9] M. B. Bush and N. Phan-Thien, “Drag force on a sphere in creeping motion through a Carreau model fluid,” Journal of Non-Newtonian Fluid Mechanics, 16, pp. 303–313 (1984).
[10] C.A. Hieber and H.H. Chiang, “ Shear rate dependence modeling of polymer melt viscosity,” Polymer Engineering and Science, 32, pp. 931–938 (1992).
[11] S.K. Goyal, E. Chu and M.R. Kamal, “Non-Isothermal radial filling of center-gated disc cavities with viscoelastic polymer melts,” Journal of Non-Newtonian Fluid Mechanics, 28, pp. 373-406 (1988).
[12] S.L. Lee and R.Y. Tzong, “Artificial pressure for pressure-linked equation,” International Journal of Heat Mass Transfer, 35, pp. 2705-2716 (1992).
[13] B.R. Munson, D.F. Young and T.H. Okiishi, Fundamentals of fluid mechanics, John Wiley & Sons, New York, pp. 19(2002).
[14] TOYOLAC® 250-X10-ABS Datasheet, Toray Industries, Inc. (2012).
[15] C.A. Hieber, V.W. Wang and H.H. Chiang, “Technical Manual,” Cornell Injection Molding Program, TM-5, (1985).
[16] S.L. Lee, “Weighting function scheme and its application on multidimensional conservation equations,” International Journal of Heat and Mass Transfer, 32, pp. 2065-2073 (1989).
[17] S.L. Lee, “A strongly implicit solver for two-dimensional elliptic differential equations,” Numerical Heat Transfer, 16, pp. 161-178 (1989).