簡易檢索 / 詳目顯示

研究生: 陳昕霈
Chen, Hsin-Pei
論文名稱: 探索外層剝離超新星之潛在倖存伴星的可觀測性:以Ic型超新星SN 2020oi為例
Exploring the Observability of Surviving Companions of Stripped-Envelope Supernovae: A Case Study of Type Ic SN 2020oi
指導教授: 潘國全
Pan, Kuo-Chuan
口試委員: 朱有花
Chu, You-Hua
陳科榮
Chen, Ke-Jung
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Institute of Astronomy
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 42
中文關鍵詞: 雙星伴星熱核塌縮超新星Ic型超新星流體動力學模擬
外文關鍵詞: Binary stars, Companion stars, Core-collapse supernovae, Type Ic supernovae, Hydrodynamical simulations
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 外層剝離超新星(Stripped-envelope supernovae, SE SNe)之外層剝離曾被認為是單一顆大質量恆星的強烈恆星風所造成的現象,但後續的觀測結果顯示,此種超新星更可能源自於雙星系統中雙星間的交互作用。最直接支持雙星系統來源的觀測證據,是觀測上找到此種超新星的倖存伴星,因為多個理論模擬研究已證明,超新星的伴星能夠歷經超新星爆發衝擊後仍存續,而且有機會被望遠鏡給捕捉。近期,根據哈伯太空望遠鏡(Hubble Space Telescope, HST)的光度及頻譜觀測,Gagliano等人發表了一個位於鄰近星系M100(距離約17.1百萬秒差距)的Ic型超新星SN 2020oi,並認為其源自雙星系統。根據Gagliano等人提供的SN 2020oi雙星系統性質,我們進行了超新星-伴星交互作用的二維流體力學模擬,以及受衝擊後倖存伴星之後續演化模擬。我們的結果顯示,倖存伴星在受衝擊後,亮度增加了兩個數量級,且表面頻譜暫時性的變紅(即表面溫度變低)。此伴星有機會以韋伯太空望遠鏡(James Webb Space Telescope, JWST)的近紅外相機NIRCam的短波長頻道進行偵測。此外,我們的伴星模型的相對星等在達到最大值後便產生明顯的劇降:這也許是一個分辨外層剝離超新星的倖存伴星訊號的好指標。


    Stripped-envelope supernovae (SE SNe) were considered as the explosions of single massive stars with strong stellar winds, while later observations favor binary origins. One direct evidence to support the binary origins is to find the surviving companions of SE SNe since previous numerical studies suggested that the binary companion should survive the supernova impact and could be detectable. Recently, Gagliano et al. (2022) reported that the nearby Type Ic SN 2020oi in M100 (~17.1 Mpc) resulted from a binary system based on the HST photometric and spectroscopic observation. Based on the suggested binary properties of SN 2020oi, we conduct two-dimensional hydrodynamics simulations of supernova-companion interactions and the subsequent post-impact evolution of the companion. Our results suggest that a surviving companion becomes brighter in two orders of magnitude and temporarily redder after the SN impact. The companion might be detectable with the JWST NIRCam short wavelength channel in a few years. Furthermore, the predicted magnitudes of surviving companions show a significant magnitude gradient around the peak. This could be another good indicator to identify the surviving companion from a SE SN.

    Abstract (Chinese) P. I Acknowledegments (Chinese) P. II Abstract P. III Acknowledgements P. IV Contents P. V List of Figures P. VII List of Tables P. XI 1 Background P. 1 2 Main Body P. 3 2.1 Introduction P.3 2.2 Numerical Methods P.7 2.3 Results P. 12 2.4 Discussion P. 20 3 Summary and Conclusions P. 29 4 Supplemental Materials P. 31 Bibliography P. 37

    1. Modjaz, M., Guti´errez, C. P., & Arcavi, I. 2019, Nature Astronomy, 3, 717. doi:10.1038/s41550-019-0856-2
    2. Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157. doi:10.1086/153315
    3. Wheeler, J. C., Lecar, M., & McKee, C. F. 1975, ApJ, 200, 145. doi:10.1086/153771
    4. Gal-Yam, A., Arcavi, I., Ofek, E. O., et al. 2014, Nature, 509, 471. doi:10.1038/nature13304
    5. Groh, J. H. 2014, A&A, 572, L11. doi:10.1051/0004-6361/201424852
    6. Langer, N. 2012, ARA&A, 50, 107. doi:10.1146/annurev-astro-081811-125534
    7. Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science, 337, 444. doi:10.1126/science.1223344
    8. Smartt, S. J. 2015, PASA, 32, e016. doi:10.1017/pasa.2015.17
    9. Prentice, S. J., Ashall, C., James, P. A., et al. 2019, MNRAS, 485, 1559. doi:10.1093/mnras/sty3399
    10. Fryxell, B. A. & Arnett, W. D. 1981, ApJ, 243, 994. doi:10.1086/158664
    11. Pan, K.-C., Ricker, P. M., & Taam, R. E. 2010, ApJ, 715, 78. doi:10.1088/0004-637X/715/1/78
    12. Pan, K.-C., Ricker, P. M., & Taam, R. E. 2012, ApJ, 750, 151. doi:10.1088/0004-637X/750/2/151
    13. Pan, K.-C., Ricker, P. M., & Taam, R. E. 2012, ApJ, 760, 21. doi:10.1088/0004-637X/760/1/21
    14. Pan, K.-C., Ricker, P. M., & Taam, R. E. 2014, ApJ, 792, 71. doi:10.1088/0004-637X/792/1/71
    15. Pan, K.-C., Ricker, P. M., & Taam, R. E. 2013, ApJ, 773, 49. doi:10.1088/0004-637X/773/1/49
    16. Liu, Z.-W., Moriya, T. J., & Stancliffe, R. J. 2015, MNRAS, 454, 1192. doi:10.1093/mnras/stv2076
    17. Bauer, E. B., White, C. J., & Bildsten, L. 2019, ApJ, 887, 68. doi:10.3847/1538-4357/ab4ea4
    18. Zeng, Y., Liu, Z.-W., & Han, Z. 2020, ApJ, 898, 12. doi:10.3847/1538-4357/ab9943
    19. Liu, Z.-W. & Zeng, Y. 2021, MNRAS, 500, 301. doi:10.1093/mnras/staa3280
    20. Rau, S.-J. & Pan, K.-C. 2022, ApJ, 933, 38. doi:10.3847/1538-4357/ac7153
    21. Hirai, R., Sawai, H., & Yamada, S. 2014, ApJ, 792, 66. doi:10.1088/0004-637X/792/1/66
    22. Liu, Z.-W., Tauris, T. M., R¨opke, F. K., et al. 2015, A&A, 584, A11. doi:10.1051/0004-6361/201526757
    23. Hirai, R., Podsiadlowski, P., & Yamada, S. 2018, ApJ, 864, 119. doi:10.3847/1538-4357/aad6a0
    24. Ogata, M., Hirai, R., & Hijikawa, K. 2021, MNRAS, 505, 2485. doi:10.1093/mnras/stab1439
    25. Maund, J. R., Smartt, S. J., Kudritzki, R. P., et al. 2004, Nature, 427, 129. doi:10.1038/nature02161
    26. Cao, Y., Kasliwal, M. M., Arcavi, I., et al. 2013, ApJL, 775, L7. doi:10.1088/2041-8205/775/1/L7
    27. Bersten, M. C., Benvenuto, O. G., Folatelli, G., et al. 2014, AJ, 148, 68. doi:10.1088/0004-6256/148/4/68
    28. Eldridge, J. J. & Maund, J. R. 2016, MNRAS, 461, L117. doi:10.1093/mnrasl/slw099
    29. Fox, O. D., Van Dyk, S. D., Williams, B. F., et al. 2022, ApJL, 929, L15. doi:10.3847/2041-8213/ac5890
    30. Sun, N.-C., Maund, J. R., Crowther, P. A., et al. 2022, MNRAS, 510, 3701. doi:10.1093/mnras/stab3768
    31. Zapartas, E., de Mink, S. E., Van Dyk, S. D., et al. 2017, ApJ, 842, 125. doi:10.3847/1538-4357/aa7467
    32. Gagliano, A., Izzo, L., Kilpatrick, C. D., et al. 2022, ApJ, 924, 55. doi:10.3847/1538-4357/ac35ec
    33. Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3. doi:10.1088/0067-0049/192/1/3
    34. Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4. doi:10.1088/0067-0049/208/1/4
    35. Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15. doi:10.1088/0067-0049/220/1/15
    36. Paxton, B., Schwab, J., Bauer, E. B., et al. 2018, ApJS, 234, 34. doi:10.3847/1538-4365/aaa5a8
    37. Paxton, B., Smolec, R., Schwab, J., et al. 2019, ApJS, 243, 10. doi:10.3847/1538-4365/ab2241
    38. Fryxell, B., Olson, K., Ricker, P., et al. 2000, ApJS, 131, 273. doi:10.1086/317361
    39. Dubey, A., Reid, L. B., & Fisher, R. 2008, Physica Scripta Volume T, 132, 014046. doi:10.1088/0031-8949/2008/T132/014046
    40. Timmes, F. X. & Swesty, F. D. 2000, ApJS, 126, 501. doi:10.1086/313304
    41. Couch, S. M., Graziani, C., & Flocke, N. 2013, ApJ, 778, 181. doi:10.1088/0004-637X/778/2/181
    42. Ricker, P. M. & Taam, R. E. 2008, ApJL, 672, L41. doi:10.1086/526343
    43. Khatami, D. K. & Kasen, D. N. 2019, ApJ, 878, 56. doi:10.3847/1538-4357/ab1f09
    44. Arnett, W. D. 1982, ApJ, 253, 785. doi:10.1086/159681
    45. Pan, K.-C., Ricker, P. M., & Taam, R. E. 2015, ApJ, 806, 27. doi:10.1088/0004-637X/806/1/27
    46. Pakmor, R., R¨opke, F. K., Weiss, A., et al. 2008, A&A, 489, 943. doi:10.1051/0004-6361:200810456
    47. Fitzpatrick, E. L. 1999, PASP, 111, 63. doi:10.1086/316293
    48. Indebetouw, R., Mathis, J. S., Babler, B. L., et al. 2005, ApJ, 619, 931. doi:10.1086/426679
    49. Rho, J., Evans, A., Geballe, T. R., et al. 2021, ApJ, 908, 232. doi:10.3847/1538-4357/abd850
    50. Wheeler, J. C., Johnson, V., & Clocchiatti, A. 2015, MNRAS, 450, 1295. doi:10.1093/mnras/stv650
    51. Fox, O. D., Azalee Bostroem, K., Van Dyk, S. D., et al. 2014, ApJ, 790, 17. doi:10.1088/0004-637X/790/1/17
    52. Ryder, S. D., Van Dyk, S. D., Fox, O. D., et al. 2018, ApJ, 856, 83. doi:10.3847/1538-4357/aaaf1e
    53. Ryder, S. D., Murrowood, C. E., & Stathakis, R. A. 2006, MNRAS, 369, L32. doi:10.1111/j.1745-3933.2006.00168.x
    54. Maund, J. R., Pastorello, A., Mattila, S., et al. 2016, ApJ, 833, 128. doi:10.3847/1538-4357/833/2/128
    55. Sun, N.-C., Maund, J. R., Hirai, R., et al. 2020, MNRAS, 491, 6000. doi:10.1093/mnras/stz3431
    56. Benvenuto, O. G., Bersten, M. C., & Nomoto, K. 2013, ApJ, 762, 74. doi:10.1088/0004-637X/762/2/74
    57. Folatelli, G., Bersten, M. C., Benvenuto, O. G., et al. 2014, ApJl, 793, L22. doi:10.1088/2041-8205/793/2/L22
    58. Maund, J. R., Arcavi, I., Ergon, M., et al. 2015, MNRAS, 454, 2580. doi:10.1093/mnras/stv2098
    59. Maund, J. R. 2019, ApJ, 883, 86. doi:10.3847/1538-4357/ab2386
    60. Turk, M. J., Smith, B. D., Oishi, J. S., et al. 2011, ApJS, 192, 9. doi:10.1088/0067-0049/192/1/9
    61. Hunter, J. D. 2007, Computing in Science and Engineering, 9, 90. doi:10.1109/MCSE.2007.55
    62. van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Computing in Science and Engineering, 13, 22. doi:10.1109/MCSE.2011.37
    63. Virtanen, P., Gommers, R., Burovski, E., et al. 2019, Zenodo

    QR CODE