簡易檢索 / 詳目顯示

研究生: 黃少翔
Huang, Shao-Siang
論文名稱: 新穎穿隧接面氮化鋁鎵/氮化鎵發光高電子遷移率電晶體之研究
Study on Novel AlGaN/GaN Light Emitting High Electron Mobility Transistor with Tunneling Junction
指導教授: 黃智方
Huang, Chih-Fang
口試委員: 盧向成
Lu, Shiang-cheng
吳添立
Wu, Tian-Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 52
中文關鍵詞: 氮化鎵高電子遷移率電晶體穿隧接面分子束磊晶
外文關鍵詞: GaN, HEMT, tunneling junction, MBE
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文著重於全新單片集成發光高電子遷移率電晶體(light emitting high electron mobility transistor, LEHEMT)結構之研究,在汲極端加入MBE成長之20 nm高濃度摻雜N+氮化鎵,與P型氮化鎵形成穿隧接面(tunneling junction),作為P型歐姆接觸。
    穿隧接面發光高電子遷移率電晶體(tunneling junction LEHEMT, TJ-LEHEMT)於本實驗中成功開發,汲極端接觸電阻(contact resistance, Rc)較一般鎳/金(Ni/Au)之P型歐姆接觸降低約兩個數量級,閾值電壓(threshold voltage, Vth)為-1.58V,最大轉移電導值(transconductance, Gm)為50.82mS/mm,導通電阻(specific on-state resistance, Ron,sp)為4.02mΩ-cm2,飽和電流於閘極電壓(Vg)為1 V時可達228.85 mA/mm,並且擁有良好的發光特性,於Vg為3V、汲極電壓(Vd)為15V時,發出波長為366.96 nm之紫外光,半高寬(full width at half maximum, FWHM)為10.34 nm,同時可透過Vg及Vd有效地控制發光強度。
    同時,成功製作增強型高電子遷移率電晶體(enhancement mode HEMT, E-mode HEMT),Vth較空乏型HEMT(depletion mode HEMT, D-mode HEMT)增加2 V,達到0.41 V,作為未來矩陣化之控制電晶體參考。


    This thesis is focused on study of a novel light emitting high electron mobility transistor (LEHEMT) structure which applies 20 nm heavily doped MBE regrown N+ GaN to the drain side, in which N+ GaN and P-type GaN forms a tunneling junction that acts as P-type ohmic contact in the LEHEMT.
    Tunneling junction high electron mobility transistor (TJ-LEHEMT) was successfully fabricated with a contact resistance (Rc) lowered by two orders of magnitude in comparison with a conventional Ni/Au P-type ohmic contact. The measured threshold voltage (Vth), peak transconductance (Gm) and specific on-state resistance (Ron,sp) are -1.58 V, 50.82 mS/mm, 4.02 mΩ-cm2 respectively. The maximum saturation current is 228.85 mA/mm at Vg=1 V. Outstanding optical characteristics were obtained with a light peak wavelength 366.96 nm in the UV range and FWHM(full width at half maximum) was 10.34 nm at Vg= 3 V, Vd= 15 V. Good controllability of light intensity with Vg and Vd were confirmed.
    At the same time, enhancement mode HEMT (E-mode HEMT) was successfully fabricated with Vth= 0.41 V, which is 2 V greater than that of the depletion mode HEMT (D-mode HEMT). The E-mode HEMT is desired as the controlling transistor reference in active matrix LED driver.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章 序論 1 1.1前言 1 1.2文獻回顧 4 1.2.1氮化鎵/氮化鋁鎵異質結構 4 1.2.2單片集成之HEMT-LED 5 1.2.3穿隧二極體 6 1.2.4微型顯示技術 6 1.3研究方向與論文架構 10 1.3.1研究方向 10 1.3.2論文架構 10 第二章 原理簡介與關鍵製程 11 2.1氮化鎵材料特性 11 2.1.1自發性極化 11 2.1.2壓電極化 11 2.1.3氮化鎵/氮化鋁鎵異質結構 12 2.2分子束磊晶之N+氮化鎵成長 14 2.3氮化鎵蝕刻製程 15 第三章 元件製作流程 18 3.1 TJ-LEHEMT 19 3.1.1 MBE N+氮化鎵磊晶 19 3.1.2 對準記號蝕刻(Mask 1) 21 3.1.3氮化鎵蝕刻(Mask 2) 23 3.1.4表面處理 24 3.1.5源極金屬(Mask 3) 24 3.1.6元件隔離(Mask 4) 26 3.1.7汲極金屬(Mask 5) 27 3.1.8閘極與襯墊金屬(Mask 6) 28 3.2 E-mode HEMT 29 3.3元件尺寸與俯視圖 31 第四章 量測與結果分析 32 4.1 2DEG TLM測試結構量測 32 4.2 N+氮化鎵霍爾量測及TLM測試結構量測 34 4.3 TJ-LEHEMT 36 4.3.1電流-電壓特性量測 36 4.3.2發光特性量測 38 4.3.3電壓與發光強度關係 40 4.4 P型氮化鎵蝕刻深度與蕭特基二極體之電性 43 4.5 E-mode HEMT之電流-電壓特性量測 46 第五章 結論與未來工作 49 參考文獻 50

    [1] A. A. Burk Jr., M. J. O'Loughlin, R. R. Siergiej, A. K. Agarwal, S. Sriram, R. C. Clarke, M. F. MacMillan, V. Balakrishna, C. D. Brandt, “SiC and GaN wide bandgap semiconductor materials and devices”, Solid-State Electronics, Vol. 43, pp. 1459-1464, 1999.
    [2] K. J. Chen, H. C. Chen, K. An. Tsai, C. C. Lin, H. H. Tsai, S. H. Chien, B. S. Cheng, Y. J. Hsu, M. H. Shih, C. H. Tsai, H. H. Shih, H. C. Kuo, “Resonant-Enhanced Full-Color Emission of Quantum-Dot-Based Display Technology Using a Pulsed Spray Method”, Adv. Funct. Mater., Vol. 22, pp. 5138–5143, 2012.
    [3] J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, M. D. Dawson, “Visible-Light Communications Using a CMOS-Controlled Micro-Light-Emitting-Diode Array”, J. Lightw. Technol., vol. 30, No. 1, pp. 61-67, 2012.
    [4] A. W. M. Zuhdi, J. J. D. McKendry, R. K. Henderson, E. Gu, M. D. Dawson, I. Underwood, “GaN based μLED Drive Circuit for Visible Light Communication (VLC) With Improved Linearity Using On-Chip Optical Feedback”, IEEE Proceeding of the International Conference, pp. 3394-3397, 2016.
    [5] V. Poher, N. Grossman, G. T. Kennedy, K. Nikolic, H. X. Zhang, Z. Gong, E. M. Drakakis, E. Gu, M. D. Dawson, P. M. W. French, P. Degenaar, M. A. A. Neil, “Micro-LED arrays: a tool for two-dimensional neuron stimulation”, J. Phys. D: Appl. Phys., Vol. 41, p. 094014, 2008.
    [6] S. Jafarabadiashtiani, “Pixel Circuits and Driving Schemes for Active-Matrix Organic Light-Emitting Diode Displays” PhD thesis, University of Waterloo, 2007.
    [7] K. S. Yeo, W. X. Ng, M. Y. Soh, T. H. Teo, “Micro-LED arrays for display and communication:device structure and driver architecture”, IEEE 12th International Conference on ASIC (ASICON), pp. 993-996, 2017.
    [8] M. A. Khan, J. N. Kuznia, J. M. V. Hove, N. Pan, and J. Carter, “Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlxGa1−xN heterojunctions” Appl. Phys. Lett., Vol. 60, pp. 3027-3029 ,1992.

    [9] M. A. Khan, A. Bhattarai, J. N. Kuznia, D. T. Olson, “High electron mobility transistor based on a GaN-AlxGa1−xN heterojunction”, Appl. Phys. Lett., Vol. 63, pp. 1214-1215 ,1993.
    [10] N.-Q. Zhang, S. Keller, G. Parish, S. Heikman, S. P. DenBaars, U. K. Mishra, “High Breakdown GaN HEMT with Overlapping Gate Structure”, IEEE Electron Device Letters, Vol. 21, No. 9, pp. 421-423, 2000.
    [11] F. Medjdoub, J. Derluyn, K. Cheng, M. Leys, S. Degroote, D. Marcon, D. Visalli, M. Van Hove, M. Germain, G. Borghs, “Low On-Resistance High-Breakdown Normally Off AlN/GaN/AlGaN DHFET on Si Substrate”, IEEE Electron Device Letters, Vol. 31, No. 2, pp. 111-113, 2010.
    [12] Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, Jr., T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate”, Appl. Phys. Lett., Vol. 102, p. 192107 ,2013.
    [13] C. Liu, Y. Cai, Z. Liu, J. Ma, K. M. Lau, “Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors”, Appl. Phys. Lett., Vol. 106, p. 181110, 2015.
    [14] Y. Cai , X. Zou, C. Liu , K. M. Lau, “Voltage-Controlled GaN HEMT-LED Devices as Fast-Switching and Dimmable Light Emitters”, IEEE Electron Device Letters, Vol. 39, No. 2, pp. 224-227, 2018.
    [15] Y. Zhang, S. Krishnamoorthy, F. Akyol, S. Khandaker, A. Allerman, M. W. Moseley, A. Armstrong, S. Rajan, “Sub 300 nm Wavelength III-Nitride Tunnel-Injected Ultraviolet LEDs”, 73rd Annual Device Research Conference (DRC), pp. 69-70, 2015.
    [16] S. J. Chang, W. H. Lin, W. S. Chen, “Cascaded GaN Light-Emitting Diodes With Hybrid Tunnel Junction Layers”, IEEE Journal Of Quantum Electronics, Vol. 51, No. 8, 2015.
    [17] Z. J. Liu, C. W. Keung, K. M. Lau, “GaN Based Active Matrix Light Emitting Diode Array by Flip-Chip Technology”, Asia Optical Fiber Communication & Optoelectronic Exposition & Conference, 2008.
    [18] J. Day, J. Li, D. Y. C. Lie, C. Bradford, J. Y. Lin, H. X. Jiang, “III-Nitride full-scale high-resolution microdisplays”, Appl. Phys. Lett., Vol. 99, p. 031116 , 2011.

    [19] Z. J. Liu, W. C. Chong, K. M. Wong, K. M. Lau, “360 PPI Flip-Chip Mounted Active Matrix Addressable Light Emitting Diode on Silicon (LEDoS) Micro-Displays”, Journal Of Display Technology, Vol. 9, No. 8, pp. 678-682, 2013.
    [20] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures”, Journal Of Appl. Phys. Vol. 85, No. 6, pp. 3222-3233, 1999.
    [21] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures”, Journal of Appl. Phys., Vol. 87, p. 334, 2000.
    [22] F. Sacconi, A. D. Carlo, P. Lugli, H. Morkoç, “Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs”, IEEE Transactions On Electron Devices, Vol. 48, No. 3, pp. 450-457, 2001.
    [23] A. Y. Cho, J. R. Arthur, “MOLECULAR BEAM EPITAXY”, Progress in Solid-State Chemistry, Vol. 10, Part 3. pp. 157-191, 1975.
    [24] G. Grecoa, F. Iucolano, F. Roccaforte, “Review of technology for normally-off HEMTs with p-GaN gate”, Materials Science in Semiconductor Processing, Vol. 78, pp. 96–106, 2018.
    [25] Y. Y. Wong, E. Y. Chang, Y. H. Wu, M. K. Hudait, T. H. Yang, J. R. Chang, J. T. Ku, W. C. Chou, C. Y. Chen, J. S. Maa, Y. C. Lin, “Dislocation reduction in GaN film using Ga-lean GaN buffer layer and migration enhanced epitaxy”, Thin Solid Films, Vol. 519, pp. 6208–6213, 2011.

    QR CODE