簡易檢索 / 詳目顯示

研究生: 謝杰燊
Hsieh, Chieh-Shen
論文名稱: 一種針對高碼率類循環低密度奇偶檢查碼之硬體友善的錯誤平層降低技術
A Hardware-friendly Error- floor Lowering Technique for High-rate QC-LDPC Codes
指導教授: 翁詠祿
Ueng, Yeong-Luh
口試委員: 王忠炫
唐宏驊
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 39
中文關鍵詞: 低密度奇偶檢查碼錯誤平層
外文關鍵詞: LDPC codes, error-floor
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低密度奇偶檢查碼(LDPC codes)在瀑布區(water-fall region)有著良好的性能,但是錯誤平層(error-floor)現象總是將低密度奇偶檢查碼排除在許多通訊系統和儲存設備之外。
    這現象是低密度奇偶檢查碼的Tanner圖的某些結構所造成,那會讓訊息傳遞解碼器(message-passing decoder)無法輸出正確的碼字(codeword)。
    對於儲存系統而言,需要的是高碼率低密度奇偶檢查碼和高吞吐量。
    我們提出一個只需要一點額外的疊代次數便可以降低高碼率低密度奇偶檢查碼錯誤平層的技術。
    除此之外,此技術也被設計成只需要耗費額外的一點硬體資源。
    若是解碼失敗,根據最後一次疊代的不滿足檢查節點(check-nodes),一定有一些錯誤位元在與他們相連接的變數節點(variable-nodes)之中。
    結合了支配的陷阱組合(trapping-set)資訊,可能錯誤的位元數量可以被大幅地減少,甚至能夠直接利用查找表(LUT)找到錯誤位元。
    提出的技術是針對可能錯誤的位元去指派修正的後驗機率(a posteriori probability)然後將他們送回解碼器去重新執行解碼。
    這個方法有著適當的計算量和資料儲存量,並且能夠達到一個很好的錯誤平層性能。
    (9216, 8352)和(18816, 16800)分別碼率為0.906和0.892-不規則高碼率準循環低密度奇偶檢查碼被使用來展示所提出的解碼器在重要性抽樣(importance sampling)的模擬中能夠降低錯誤平層好幾個層級。
    並且在(9216, 8352)-分層架構解碼器的硬體實現結果下顯示降低錯誤平層組件只需要增加少許的邏輯閘數量。


    Low-density parity-check (LDPC) codes have great performance in water-fall region, but the error-floor phenomenon always excludes LDPC codes from many communication and storage systems.
    The phenomenon is resulted from some structures in LDPC codes' Tanner graph that disable the message-passing decoders to output correct codewords.
    For storage systems, high-rate LDPC codes and high-throughput are required.
    A technique is proposed to lower the error-floors of high-rate QC-LDPC codes with only a few extra number of iterations.
    In addition, the technique is also devised to cost only a few extra hardware resources.
    If a decoding failure happens, based on the unsatisfied check-nodes in the last iteration , it is known that there must be some error-bits in their adjacent variable-nodes.
    Combined with dominant trapping-set information, the amount of error-likely bits can be substantially reduced, even find the error-bits directly by look-up table (LUT).
    The proposed lowering technique aims at error-likely bits or error-bits to assign modified a posteriori probability (APP) to and send them back to a decoder to re-perform decoding process.
    This manner has a moderate quantity of computation and data storage, and could achieve a great error-floor performance.
    The (9216, 8352) and (18816, 16800)-irregular high-rate Quasi-Cyclic LDPC (QC-LDPC) code that have a coderate 0.906 and 0.892 have been used to demonstrate the proposed decoder can lower the error-floor by several orders in importance sampling simulations.
    And the result of hardware implementation in (9216, 8352)-layered decoding shows that the added gatecount of the error-floor lowering module is just a little.

    Abstract I 1 Introduction 1 2 Reviews of Error-floor Estimation 4 2.1 Ecient Algorithm for Finding Dominant Trapping sets . 5 2.2 Importance Sampling . . . . . . . . . . . . . . .. 8 3 Reviews of Error-floor Lowering Techniques for LDPC codes 11 3.1 Pre-known Failure Avoidance . . . . . . . . . 11 3.2 Bi-mode Decoder. . . . . . . . . . . . . .. . . 12 3.3 Postprocessing . . . . . . . . . . . . . . . . 13 3.4 Backtracking . . . . . . . . . . . . . . . . . 13 4 Proposed Error-floor Lowering Technique for LDPC Codes 16 4.1 Algorithm . . . . . . . . . . . . . . . . . . . 17 4.2 Hardware Architecture . . . . . . . . . . . . .. 26 4.3 Simulation Results . . . . . . . . . . . . . . . 28 5 Conclusions 35 Bibliography 37

    [1] R. G. Gallager, \Low-density parity-check codes," IRE Trans. Inf. Theory, vol. IT-8, pp. 21-28, Jan. 1962.
    [2] D. J. C. MacKay, \Good error-correcting codes based on very sparse matrices," IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399-431, Mar. 1999.
    [3] D. MacKay and M. Postol, \Weaknesses of margulis and ramanujan-margulis low-density parity-check codes," Electronic Notes Theoretical Computer Science, vlo. 74, 2003.
    [4] T. Richardson, \Error-floors of LDPC codes," in Proc. 41st Allerton Conf. Commun., Control, Computing, Allerton House, Monticello, IL, USA, Oct. 2003.
    [5] P. O. Vontobel and R. Koetter, \Graph-cover decoding and finite-length analysis of message-passing iterative decoding of LDPC codes CoRR" [Online]. Available: arxiv.org/abs/cs/0512078
    [6] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, \Construction of irregular LDPC codes with low error
    -floors," Proc. IEEE International Conf. Commun., vol. 5, pp. 3125-3129, May 2003. 37
    [7] W.-Y. Weng, A. Ramamoorthy, and R. D. Wesel, \Lowering the error-floors of irregular high-rate LDPC codes by graph condition," Proc. 60th Veh. Technol. Conf., vol. 4, pp. 2549-2553, Sept. 2004.
    [8] D. Divsalar and C. Jones, \Protograph based low error
    -floor LDPC coded modulation," Proc. IEEE Military Commun. Conf., vol. 1, pp. 378-385, Oct. 2005.
    [9] Y. Zhang and W. E. Ryan, \Toward low LDPC-code floors: a case study," IEEE Trans. Commun., Jun. 2009.
    submitted to IEEE Trans. Commun.,
    [10] J. Lu and J. M. F. Moura, \Structured LDPC codes for high-density recording: large girth and low error
    oor," IEEE Trans. Magnetics, vol. 42, pp. 208-213, Feb. 2006.
    [11] M. Karimi and A. H. Banihashemi, \Ecient algorithm for finding dominant trapping sets of LDPC codes" IEEE Trans. Inf. Theory, vol. 58, no. 11, pp. 6942{6958, Nov. 2012.
    [12] R. Koetter and P. O. Vontobel, \Graph-covers and iterative decoding of finite length codes" Proc. IEEE Int. Symp. Turbo Codes Appl., Brest, France, Sep. 2003, pp. 75{82.
    [13] C. Cole, S. Wilson, E. Hall, and T. Giallorenzi, \A general method for fi nding low error rates of LDPC codes CoRR" [Online]. Available:arxiv.org/abs/cs/0605051.
    [14] H. Xiao and A. H. Banihashemi, \Error rate estimation of low-density parity-check codes on binary symmetric channels using cycle enumeration," IEEE Trans. Commun., vol. 57, no. 6, pp. 1550{1555, Jun. 2009.38
    [15] Y. Zhang and W. E. Ryan, \Toward low LDPC-code
    floors: A case study," IEEE Trans.Commun., vol. 57, no. 6, pp. 1566{1573, Jun. 2009.
    [16] E. Cavus and B. Daneshrad, \A performance improvement and error-floor avoidance technique for belief propagation decoding of LDPC codes," in Proc. 16th IEEE International Symp. Personal, Indoor Mobile
    Radio Commun, vol.4, pp. 2386-2390, Sept. 2005.
    [17] Y. Han and W. E. Ryan, \Low floor decoder for LDPC codes," IEEE Trans. Commun., vol. 57, no. 6, pp. 1663-1673, June 2009.
    [18] Z. Zhang, L. Dolecek, B. Nikolic,V. Anantharam, and M.J.Wainwright,\Lowering LDPC error
    oors by postprocessing," in Proc. IEEE Global Communications Conf., NewOrleans, LA, pp. 1{6, Nov. 2008.
    [19] J. Kang, Q. Huang, S. Lin, and K. Abdel-Gha ar, \An iterative decoding algorithm with backtracking to lower the error-floors of LDPC codes," IEEE Trans. Commun., vol. 59, no. 1, Jan 2011.
    [20] Jyun-Kai Hu, \A Reduced-Complexity Layered Decoder Architecture for High-Rate QC-LDPC Codes" NTHU Master Thesis.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE