簡易檢索 / 詳目顯示

研究生: 陳姿瑜
論文名稱: 金屬改質奈米二氧化鈦觸媒之研究與應用
指導教授: 王竹方
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 90
中文關鍵詞: 金屬改質二氧化鈦光催化合成法亞甲基藍
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以光催化合成法將Ag、Pt、Fe、Cu、Pb、Ce、Sr與Ba八種金屬固定於陶瓷基材上之奈米級二氧化鈦(TiO2)表面,利用金屬本身之特性及可以捕捉TiO2光生電子的能力,有效減少電子電洞再結合的機率,使經過金屬改質光觸媒比TiO2具有更佳的光催化效果,並探討氧化還原電位於光催化合成效果及光催化分解動力學之影響。本研究使用ICP-AES、BET、SEM/EDX、TEM、XANES與XRD等儀器鑑定光觸媒之基本特性,並將金屬改質光觸媒應用於分解亞甲基藍溶液以探討光催化分解性能。實驗結果顯示,SEM觀察到的TiO2粒徑大約為10~20 nm,進一步由TEM中觀察到的金屬粒徑為1~5 nm。金屬/TiO2/陶瓷粉光觸媒在UV光照射的條件下,貴重金屬改質觸媒的分解效能最佳,其次為過渡金屬與鹼土金屬,稀土元素則最差;在不同pH值的實驗條件下,鹼性條件有最好的分解效果。實驗證實以光催化合成法可以有效將金屬沉積於TiO2表面,製備出更有效之光觸媒材料。


    第一章 前言 1-1 研究緣起 1-2 研究目的與內容 第二章 文獻回顧 2-1 光催化反應基本原理 2-2 奈米光觸媒的製備 2-3 奈米光觸媒的改質 2-3-1 添加重金屬 2-3-2 複合半導體材料 2-3-3 摻雜過渡金屬 2-3-4 表面敏化 2-3 光催化合成法 2-3-1 貴重金屬的改質 2-3-2 過渡金屬的改質 2-3-3 稀土、鹼土的改質 第三章 研究方法 3-1 實驗藥品與相關儀器 3-1-1 實驗藥品 3-1-2 實驗儀器 3-2 製備方法 3-2-1奈米級TiO2/陶瓷粉光觸媒的製備 3-2-2 金屬改質奈米級TiO2/陶瓷粉之光觸媒製備 3-3 實驗方法 3-3-1改質型奈米光觸媒之基本性質鑑定 3-3-2改質型奈米光觸媒之光催化效能測試 3-3-3 Fe、Ag、Pt改質型奈米光觸媒對酸、中、鹼性亞甲基藍溶 液分解實驗 第四章 結果與討論 4-1 金屬改質奈米光觸媒之性質鑑定與分析 4-1-1 奈米光觸媒成分組成元素分析-ICP-AES定量分析 4-1-2奈米光觸媒比表面積與孔隙度分析-BET分析結果 4-1-3 奈米光觸媒外表形貌鑑定-SEM/EDX鑑定結果 4-1-4奈米光觸媒之結構、粒徑、金屬分佈分析-TEM結果 4-1-5 奈米光觸媒之組態分析-XAS分析結果 4-1-6 奈米光觸媒之晶相型分析-XRD鑑定結果 4-2 奈米光觸媒之光催化分解效能測試 4-2-1 UV光降解亞甲基藍實驗 4-2-2 Fe、Ag與Pt改質型奈米光觸媒降解不同pH值亞甲基藍溶液 實驗 4-3 反應機制的探討 第五章 結論與建議 5-1 結論 5-2 建議 第六章 參考文獻

    1. Fernandez A., G. Lassaletta, V.H. Jimenez, A. Justo, A.R.G. Elipe, J.M. Herrmann, H. Tahiri and Y.A. Ichou, Applied Catalysis B:Environmental, 7, 49-63, 1995.
    2. Hoffmann M.R., S.T. Martin, W. Choi and D.W. Bahnemannt, Chemical Reviews, 95, 69-96, 1995.
    3. Linsebigier A.L., G. Lu and J.T. Yates, Chemical Reviews, 95, 735-758, 1995.
    4. Sahyun M.R.V. and N. Serpone, Journal of Photochemistry and Photobiology A: Chemistry, 115, 231-238, 1998.
    5. Tlennakone K. and K.G.U. Wijayantha, Journal of Photochemistry and Photobiology A: Chemistry, 113, 89-92, 1998.
    6. Torimoto T., Y. Okawa, N. Takeda and H. Yoneyama, Journal of Photochemistry and Photobiology A: Chemistry, 103, 153-157, 1997.
    7. Tryba B., A.W. Morawski and M. Inagaki, Applied Catalysis B: Environmental, 41, 427-433, 2003.
    8. Ao C.H. and S.C. Lee, Journal of Photochemistry and Photobiology A: Chemistry, 161, 131-140, 2004.
    9. Kwon C.H., H. Shin, J.H. Kim, W.S. Choi and K.H. Yoon, Materials Chemistry and Physics, 86, 78-82, 2004.
    10. Zaleska A., J. Hupka, M. Wiergowski and M. Biziuk, Journal of Photochemistry and Photobiology A: Chemistry, 135, 213-220, 2000.
    11. Bozzi A., I. Guasaquillo and J. Kiwi, Applied Catalysis B: Environmental, 51, 203-211, 2004.
    12. Carpioa E., P. Z´u˜nigaa, S. Poncea, J. Solisa, J. Rodriguez and W. Estrada, Journal of Molecular Catalysis A: Chemical, 228, 293-298, 2005.
    13. Yu J., X. Zhao and Q. Zhao, Materials Chemistry and Physics, 69, 25-29, 2001.
    14. Hung C.H. and B.J. Marinas, Environmental Science and Technology, 31, 1440-1445, 1997.
    15. Kishimoto H., K. Takahama, N. Hashimoto, Y. Aoi and S. Deki, Journal of Materials Chemistry, 8, 2019-2024, 1998.
    16. Ara˜na J., J.M.D. Rodr´ıguez, J.A.H. Meli´an, E.T. Rend´on and O. G. D´ıaz, Journal of Photochemistry and Photobiology A: Chemistry 174, 7-14, 2005.
    17. Serpone N., P. Maruthamuthu, P. Pichat, E. Pelizzetti and H. Hidaka, Journal of Photochemistry and Photobiology A: Chemistry, 85, 247-255, 1995.
    18. Herrmann J.M., J. Disdier and P. Pichat, Chemical Physics Letters, 108, 618-622, 1984.
    19. Kumbhar A. and G. Chumanov, Journal of Nanoparticle Research, 7, 489-498, 2005.
    20. Anpo M., Studies in surface Science and Catalysis, 130, 157-167, 2000.
    21. Iwasaki M., M. Hara, H. Kawada, H. Tada and S. Ito, Journal of Colloid and Interface Science, 224, 202-204, 2000.
    22. Cho Y.M., W.Y. Choi, C.H. Lee, T.H. Hyeon and H.I. Lee, Environmental Science and Technology, 35, 966-970, 2001.
    23. Minero C., F. Catozzo, E. Pelizzetti, Langmuir, 8, 481-486, 1992.
    24. Kim K.D., D. N. Han, J.B. Lee and H.T. Kim, Scripta Materialia, 54, 143-146, 2006.
    25. Yang J.C., Y.C. Kim, Y.G. Shul, C.H. Shin and T.K. Lee, Applied Surface Science, 121-122, 525-529, 1997.
    26. Forouzan F., T.C. Richards and A.J. Bard, Journal of Physical Chemistry, 100, 18123-18127, 1996.
    27. Naseem R. and S.S. Tahir, Water Reserch, 35, 3982-3986, 2001.
    28. Ming Y., C.R. Chenthamarakshan and K. Rajeshwar, Journal of Photochemistry and Photobiology A: Chemistry, 147, 199-204, 2002.
    29. Everly C.R. and J.G. Traynham, Journal of American Chemical Society, 100, 4317-4318, 1978.
    30. Kim M., K. Hong and J.G. Chung, Water Research, 37, 3524-3529, 2003.
    31. Chenthamarakshan C.R. and K. Rajeshwar, Electrochemistry Communications, 2, 527-530, 2000.
    32. Sclafani A., M.N. Mozzanega and P. Pichat, Journal of Physical Chemistry, 59, 181-189, 1991.
    33. Liu S.X., Z.P. Qu, X.W. Han and C.L. Sun, Catalysis Today, 93-95, 877-884, 2004.
    34. Bamwenda G.R., S. Tsubuta, T. Nakamura and M. Haruta, Journal of Physical Chemistry, 89, 177-189, 1995.
    35. Li Y., G. Lu and S. Li, Applied Catalysis A: General, 214, 179-185, 2001.
    36. Harada M. and H. Einaga, Catalysis Communications, 5, 63-67, 2004.
    37. Jang S.J., M.S. Kim and B.W. Kim, Water Research, 39, 2178-2188, 2005.
    38. Sunada K., T. Awatanabe and K. Hashimoto, Environmental Science and Technology, 37, 4785-4789, 2003.
    39. Chiang K., R. Amal and T. Tran, Advances in Environmental Research, 6, 471-485, 2002.
    40. Liu B., X. Zhao, N. Zhang, Q. Zhao, X. He and J. Feng, Surface Science, 595, 203-211, 2005.
    41. Zhao X.F. , X.F. Meng, Z.H. Zhang, L. Liu and D.Z. Jia, Journal of Inorganic Materials, 19, 140-146, 2004.
    42. Horiguchi A., Y. Watanabe, Japanese Journal of Applied Physics Part 1 -Regular Papers Short Notes & Review Papers, 38, 5314-5316, 1999.
    43. E. Leyva, E. Moctezuma, M.G. RuõÂz, L. Torres-MartõÂnez, Catalysis Today, 40, 367-376, 1998.
    44. Vorontsov A.V., Journal of Photochemistry and Photobiology A: Chemistry, 125, 113-117, 1999.
    45. Blount M.C. and J.L. Falconer, Applied Catalysis B: Environmental, 39, 39-50, 2002.
    46. Esch F., S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli and R. Rosei, Scinece, 309, 752-755, 2005.
    47. Legan R.W., Chemical Engineering, 89, 95-100, 1982.
    48. Yamazaki S., N. Takemura, Y. Yoshinaga and A. Yoshida, Journal of Photochemistry and Photobiology A: Chemistry, 161, 57-60, 2003.
    49. Wang R., J.H. Xina, Y.Yang, H. Liuc, L. Xuc and J. Hu, Applied Surface Science, 227, 312-317, 2004.
    50. Liu Z., B. Guo, L. Hong and H. Jiang, Journal of Photochemistry and Photobiology A: Chemistry, 172, 81-88, 2005.
    51. Vamathevan V., R. Amal, D. Beydoun, G. Low and S. McEvoy, Journal of Photochemistry and Photobiology A: Chemistry, 148, 233-245, 2002.
    52. Sano T., N. Negishi, D. Mas and K. Takeuchi, Journal of Catalysis, 194, 71-79, 2000.
    53. Jin S. and F. Shiraishi, Chemical Engineering Journal, 97, 203-211, 2004.
    54. Arabatzis I. M., T. Stergiopoulos, M. C. Bernard, D. Labou, S. G. Neophytides and P. Falaras, Applied Catalysis B: Environmental, 42, 187-201, 2003.
    55. Chen J., D.F. Ollis, W.H. Rulkens and H. Bruning, Water Research, 33, 1173-1180, 1999.
    56. http://hyperphysics.phy-astr.gsu.edu/hbase/tables/photoelec.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE